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Series Introduction

Over the past 50 years, digital signal processing has evolved as a major
engineering discipline. The fields of signal processing have grown from the
origin of fast Fourier transform and digital filter design to statistical spectral
analysis and array processing, and image, audio, and multimedia processing, and
shaped developments in high-performance VLSI signal processor design. Indeed,
there are few fields that enjoy so many applications—signal processing is
everywhere in our lives.

When one uses a cellular phone, the voice is compressed, coded, and
modulated using signal processing techniques. As a cruise missile winds along
hillsides searching for the target, the signal processor is busy processing the
images taken along the way. When we are watching a movie in HDTV, millions of
audio and video data are being sent to our homes and received with unbelievable
fidelity. When scientists compare DNA samples, fast pattern recognition tech-
niques are being used. On and on, one can see the impact of signal processing
in almost every engineering and scientific discipline.

Because of the immense importance of signal processing and the fast-
growing demands of business and industry, this series on signal processing serves
to report up-to-date developments and advances in the field. The topics of interest
include but are not limited to the following:

m  Signal theory and analysis

iii



iv Series Introduction

Statistical signal processing

Speech and audio processing

Image and video processing

Multimedia signal processing and technology
Signal processing for communications

Signal processing architectures and VLSI design

I hope this series will provide the interested audience with high-quality,
state-of-the-art signal processing literature through research monographs, edited
books, and rigorously written textbooks by experts in their fields.

K. J Ray Liu



Preface

This book is based in part on my earlier work, Pattern Recognition and Image
Preprocessing, which was published in 1992 and reprinted in 1999. At the request
of the publisher, in this expanded edition, I am including most of the supple-
mentary materials added to my lectures from year to year since 1992 while I used
this book as a text for two courses in pattern recognition and image processing.

Pattern recognition (or pattern classification) can be broadly defined as a
process to generate a meaningful description of data and a deeper understanding
of a problem through manipulation of a large set of primitive and quantifying
data. The set inevitably includes image data—as a matter of fact, some of the data
may come directly after the digitization of an actual natural scenic image. Some
of that large data set may come from statistics, a document, or graphics, and is
eventually expected to be in a visual form. Preprocessing of these data is
necessary for error corrections, for image enhancement, and for their under-
standing and recognition. Preprocessing operations are generally classified as
“low-level” operations, while pattern recognition including analysis, description,
and understanding of the image (or the large data set), is high-level processing.
The strategies and techniques chosen for the low- and high-level processing are
interrelated and interdependent. Appropriate acquisition and preprocessing of the
original data would alleviate the effort of pattern recognition to some extent,
For a specific pattern recognition task, we frequently require a special method for
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the acquisition of data and tts processing. For this reason, I have integrated these
two levels of processing into a single book. Together with some exemplary
paradigms, this book exposes readers to the whole process in the design of a good
pattern recognition system and inspires them to seek applications within their
own sphere of influence and personal experience.

Theory and applications are both important topics in the pattern recognition
discussion. They are treated on a pragmatic basis in this book. We chose
“application” as a vehicle through which to investigate many of the disciplines.

Recently, neural computing has been emerging as a practical technology
with successful applications in many fields. The majority of these applications are
concerned with problems in pattern recognition. Hence, in this edition we
elaborate our discussion of neural networks for pattern recognition, with
emphasis on multilayer perceptron, radial basis functions, the Hamming net,
the Kohonen self-organizing feature map, and the Hopfield net. These five neural
models are presented through simple examples to show the step-by-step proce-
dure for neural computing to help readers start their computer implementation for
more complex problems.

The wavelet is a2 good mathematical tool to extract the local features of
variable sizes, variable frequencies, and variable locations in the image; it is very
effective in the compression of image data. A new chapter on the wavelet and
wavelet transform has been added in this edition. Some work done in our
laboratory on wavelet tree-structure-based image compression, wavelet-based
morphological processing for image noise reduction, and wavelet-based noise
reduction for images with extremely high noise content is presented.

The materials collected for this book are grouped into five parts. Part I
emphasizes the principles of decision theoretic pattern recognition. Part II
introduces neural networks for pattern recognition. Part 1II deals with data
preprocessing for pictorial pattern recognition. Part IV gives some current
examples of applications to inspire readers and interest them in attacking real-
world problems in their field with the pattern recognition technique and build
their confidence in the capability and feasibility of this technique. Part V
discusses some of the practical concerns in image preprocessing and pattern
recognition,

Chapter 1 presents the fundamental concept of pattern recognition and its
system configuration. Included are brief discussions of selected applications,
including weather forecasting, handprinted character recognition, speech recogni-
tion, medical analysis, and satellite and aerial-photo interpretation. Chapter 1 also
describes and compares the two principal approaches used in pattern recognition,
the decision theoretic and syntactic approaches.

The remaining chapters in Part I focus primarily on the decision theoretic
approach. Chapter 2 discusses supervised and unsupervised learning in pattern
recognition. Chapters 3 and 4 review the principles involved in nonparametric
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decision theoretic classification and the training of the discriminant functions
used in these classifications. Chapter S introduces the principles of statistical
pattern decision theory in classification.

A great many advances have been made in recent years in the field of
clustering (unsupervised learning). Chapter 6 is devoted to the current trends and
how to apply these approaches to recognition problems. Chapter 7 discusses
dimensionality reduction and the feature selection, which are necessary measures
in making machine recognition feasible. In this chapter, attention is given to the
following topics: optimal number of features and their ordering, canonical
analysis and its application to large data-set problems, principal-component
analysis for dimensionality reduction, the optimal classification with Fisher’s
discriminant, and the nonparametric feature selection method, which is applicable
to pattern recognition problems based on mixed features.

Data preprocessing, a very important phase of the pattern recognition
system, is the focus of Part III. Emphasis is on the preprocessing of original data
for accurate and correct pictorial pattern recognition. Chapters 12, 14, and 15 are
devoted primarily to the methodology employed in preprocessing a large data-set
problem. Complex problems, such as scenic images, are used for illustration.
Processing in spatial domain and transform domain including wavelet is consid-
ered in detail. Chapter 13 discusses some prevalent approaches used in pictorial
data processing and shape analysis. All these algorithms have already been
implemented in our laboratory and evaluated for their effectiveness with real-
world problems.

Pattern recognition and image preprocessing can be applied in many
different areas to solve existing problems. This is a major reason this discipline
has grown so fast. In turn, various requirements posed during the process of
resolving practical problems motivate and speed up the development of this
discipline. For this reason individual projects are highly recommended to
complement course lectures, and readers are highly encouraged to seek applica-
tions within their own sphere of influence and personal experience. Although this
may cause extra work for the instructors, it is worthwhile to do it for the benefit of
the students and of the instructors themselves.

In Part V, we address a problem that is of much concern to pattern
recognition and image preprocessing scientists and engineers: The various
computer system architectures for the task of image preprocessing and pattern
recognition.

A set of sixteen 512 x 512 256 gray-level images is included in Appendix
A. These images can be used as large data sets to illustrate many of the pattern
recognition and data preprocessing concepts developed in the text. They can be
used in their original form or altered to generate a variety of input data sets.
Appendices B and C provide some supplementary material on image models and
discrete mathematics, respectively, as well as on digital image fundamentals,
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which can be used as part of lecture material when the digital image preproces-
sing technique is the main topic of interest in the course.

This book is the outgrowth of two graduate courses—*Principles of Pattern
Recognition” and “Digital Image Processing”—which I first developed for the
Department of Electrical Engineering at The Pennsylvania State University in
1982 and have updated several times while at the Department of Electrical
Engineering at Northern Illinois University since 1987. Much of this material has
been used in writing the book, and it is appropriate for both graduate and
advanced undergraduate students. This book can be used for a one-semester
course on pattern recognition and image preprocessing by omitting some of the
material. It can also be used as a two-semester course with the addition of some
computer projects similar to those suggested herein. This book will also serve as
a reference for engineers and scientists involved with pattern recognition, digital
image preprocessing, and artificial intelligence.

I am indebted to Dale M. Gnmes, former Head of the Department of
Electrical Engineering of The Pennsylvania State University, for his encourage-
ment and support, and to George J. McMurty, Associate Dean of the College of
Engineering, The Pennsylvania State University. My thanks also go to Romualdas
Kasuba, Dean of the College of Engineering and Engineering Technology, to
Darrell E. Newell and Alan Genis, former Chairs of the Department of Electrical
Engineering before my term, and to Vincent McGinn, Chair of the Department of
Electrical Engineering, all at Northern Illinois University, for their encourage-
ment and support.

I am most grateful to the students who attended my classes, which have
been offered twice a year with enrollment of around 20 students in each class
since 1987 at Northern Illinois University, and to the students of my off-campus
classes in the Chicago area given for high-technology industrial professionals. 1
thank them for their enthusiastic discussions, both in and out of class, and for
writing lengthy programs for performing many experiments. Some of these
experiments are included here as end-of-chapter problems, which greatly enrich
this book. These programs have been compiled as a software package for student
use in the Image Processing Laboratory at Northern llinois University.

I would also like to express my sincere thanks to Neil Colwell and Keith
Lowman of the ArtPhoto Department of Northern Illinois University. Their
assistance in putting the images and figures in a very pleasant form is highly
appreciated.

Special thanks goes to Rita Lazazzaro and Theresa Dominick, both of
Marcel Dekker, Inc., for their enthusiasm in managing this project and excellent,
meticulous editing of this book. Without their timely effort this book might still
be in preparation.

Hearty appreciation is also extended to Dr. J. L. Koo, the founder of the
Shu-ping Memorial Scholarship Foundation, for his kind and constant support in
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granting me a scholarship for higher education. Without this opportunity, I can
hardly imagine how I could have become a professor and scientist, and how I
could have published this book.

Finally, I am obliged to Xia-Fang, my dearest, late wife, for her constant
encouragement and help during her lifetime. [ am very sorry that she is gone, and
I miss her. She is always in my heart.

Sing-Tze Bow
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1

Introduction

1.1 PATTERNS AND PATTERN RECOGNITION

When we talk about “patterns,” very often we refer it to those objects or forms
that we can perceive. As a matter of fact, there should be a much broader
implication for the word “pattern.”

There are good examples to show that a pattern is not necessary confined to
be a visible object or form, but a system of data. For example, for the study of the
economic situation of a country, we really are talking about the “pattern™ of the
country’s national economy. During the international financial crisis in 1997~
1999, some countries suffered very heavy impacts, while some did not. This is
because the “patterns” of their national economy are different. Take another
example, for the study of weather forecasting, a system of related data are needed.
Weather forecasting is based on “patterns” specified on pressure contour maps
and radar data over an area. To assure continuous service and economic
dispatching of electrical power, bunches of data on various “dispatching
patterns” through thorough study on the complicated power system are needed
for analysis.

Pattern can then be defined as a quantitative or structural description of an
object or some other entity of interest (i.e., not just a visible object, but also a
system of data). It follows that a pattern class can be defined as a set of patterns
that share some properties in common. Since patterns in the same class share

3



4 Chapter1

some properties in common, we can then easily differentiate buildings of different
models. Similarly, we would not have any difficulty to identify alphanumeric
characters even when they are of different fonts and with different orientation and
size. We can also differentiate men from women; differentiate people who came
from west hemisphere from those from east hemisphere; differentiate trucks from
cars even with different models. This is because the former ones and the latter
ones are defined as different pattern classes for the specific problem.

Pattern recognition is a process of categorizing any sample of measured or
observed data as a member of one of the several classes or categories. Due to the
fact that pattern recognition is a basic attribute of human beings and other living
things, it has been taken for granted for long time. We are now expected to
discover the mechanism of their recognition, simulate it, and put it into action
with the modern technology to benefit the human beings. This book is dedicated
to the design of a system to simulate the recognition of the human being, where
the acquisition of information through human sensory organs, processing of this
information and making decision through the brain are mainly involved. Pattern
recognition is a ramification of artificial intelligence. It is an “interdisciplinary
subject.” This subject currently challenges scientists and engineers in various
disciplines. Electrical and computer scientists and engineers work on this;
psychologists, physiologists, biologists, neurophysiologists also work on this. A
lot of scientists apply this technology to solve problems in their own field, namely,
archaeology, art conservation, astronomy, aviation, chemistry, defense/spy
purposes, earth resource management, forensics and criminology, geology,
geography, medicine, meteorology, nondestructive testing, oceanography, surveil-
lance, etc. Psychologists, physiologists, biologists, and neurophysiologists devote
their effort toward exploring how living things perceive objects. Electrical and
computer scientists and engineers, as well as applied mathematicians, devote
themselves in the development of the theories and techniques for computer
implementation of a given recognition task.

When and where is the pattern recognition technique applicable? This
technique is useful when (a) normal analysis fails; (b} modeling is inadequate;
and (c) simulation is ineffective. Under such situations, pattern recognition
technique will be found to be useful and would play an important role.

There are two types of items for recognition:

1. Recognition of concrete items. These types of items are visualized and
interpreted easier. Among the concrete items are spatial and temporal ones.
Examples of spatial items are scenes, pictures, symbols (e.g., traffic symbols),
characters (e.g., alphanumeric, Saudi-Arabic character, Chinese characters, etc.),
target signatures, road maps, weather maps, speech waveform, ECG, EEG,
seismic wave, two-dimensional images, three-dimensional physical objects, etc.
Examples of temporal items are real time speech waveform, real time heart beat,



Introduction 5

and any other time varying waveforms. Some of those items mentioned above are
one-dimensional, e.g., speech waveform, electrocardiogram (ECG), electroence-
phalogram (EEQG), seismic wave, target signature, etc; some of them are two-
dimensional, e.g., map, symbol, picture, x-ray images, cytological images,
computer tomography images (CT); and some are three-dimensional objects.

2. Recognition of abstract items (conceptual recognition). Examples are
ideas, arguments, etc. Say, whose idea is the NAFTA (North America Free Trade
Agreement)? Many people might recall that this idea was from a person who ran
for the U.S. Presidency with Bill Clinton and Bob Dole in 1992. Let us take
another example. From the style of writing, can we differentiate a prose from a
poem? From the version of a prose, can we identify the Dickens’ work from
others’? Surely, we can. Since the style of writing is a form of pattern. When we
listen to the rhythm, can we differentiate Zhakovski’s work from that of Mozart?
Surely, we can. The rhythm is a form of pattern. However, recognition of the
patterns like those mentioned above (termed conceptual recognition), belongs to
another branch of artificial intelligence, and is beyond the scope of this book.

We have to mention here that for the pattern recognition, there is no
unifying theory that can be applied to all kinds of pattern recognition problems.
Applications tend to be specific and require specific techniques. That is,
techniques used are mainly problem oriented. In Part 1 of this book, basic
principles including (1) supervised pattern recognition (with a teacher to train the
system), (2) unsupervised pattern recognition (learning by the system itself), and
(3) neural network models will be discussed.

1.2 SIGNIFICANCE AND POTENTIAL FUNCTION
OF THE PATTERN RECOGNITION SYSTEM

It is not difficult to see that during the twentieth century automation had already
liberated human beings from the heavy physical labor in the industry. However,
many tasks, which were thought to be light in physical labor, such as parts
inspection, including measurements of some important parameters, are still in
their primitive human operation stage. As a contrast, they lag behind in efficiency
and effectiveness. They even suffer overload to the mass production of products
and flooding of graphical documents that need to be handled. Such work involves
mainly the acquisition of information through the human sensory organs,
especially visual and audio sensing organs; the processing of this information
and decision making through the brain. This is really the function of the
automation of the pattern recognition.

Application of the pattern recognition is very wide. It can be applied, in
theory, to any situation in which the visual and/or audio information is needed in
a decision process. Take, as an example, mail sorting. This job does not look
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heavy in comparison with the steel manufacturing. But the steel-manufacturing
plant is highly automated, and mail-sorting work becomes monotonous and
boring. If the pattern recognition technique were used to replace human operator
to identify the name and address of addressee on the envelope, the efficiency and
the effectiveness of the mail sorting would be highly increased.

Automation on the laboratory examination of routine medical images such
as (a) chest x-rays for pneumoconiosis and (b) cervical smears and mammograms
for the detection of precancer or early stage of cancer is another important
application area. It is also possible to screen out those inflammable abnormal cells
which look very much like cancerous cells under the microscope.

Aerial and satellite photointerpretation on the ground information is
another important application of the pattern recognition. Among the applications
in this field are (a) crop forecast and (b) analysis of cloud patterns, etc. Some
paradigm applications are given at the end of this chapter and at the end of this
book. Aside from these, there are many other applications, especially at a time
when we are interested in the global economy.

1.2.1 Modes of Pattern Recognition System

The pattern recognition system that we have so far can be categorized into the
following modes.

1. The system is developed to transform a scene into another which is more
suitable for the human to recognize (or understand) the scene. Various kinds of
interference might be introduced during the process of acquiring an image. The
interference may come from the outside medium and also from the sensor itself
(i.e., the acquiring device). Some techniques need to be developed to improve the
image and even to recover the original appearance of the object. This image
processing involves a sequence of operations performed upon the numercal
representation of objects in order to achieve a “desired” result. In the case of a
picture, the image processing changes its form into a modified version so as to
make it more desirable for identification purpose. For example, if we want to
understand what is in the noisy image shown in Figure 1.1a, we have to first
improve the image to the one shown in Figure 1.1b, from which we can then
visualize the scene.

2. The system is developed to enhance a scene for human awareness and
also for human reaction if needed. An example of this application can be found in
the identification of a moving tank in the battlefield from the air. Target range and
target size must be determined. Some aspects on the target, including its shape
and the symbols printed on the target, are useful to distinguish the enemy one
from the friendly one. Information such as how fast the target is moving and
along which direction is it moving is also needed. In addition, factors influencing
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FIGURE 1.1 (a) A scenic image taken during foggy moming. (b) Processed image with
an image enhancer.

the correct identification, e.g., background radiance, smoking environment,
target/background contrast, stealth, etc. should also be taken into consideration.
3. The system is developed to complete a task in hand. To achieve noiseless
transmission, the teeth on a pair of gear and pinion should match precisely.
Usually this job rests on the human operator with his/her hands, eye, and brain. It
is possible, however, to design a computer inspection system with pattern
recognition technique to relieve the human inspector in doing this tedious and
monotonous work. The pattern recognition system can also be designed for
industrial parts structure verification, and for “bin-picking” in industy, Bin-
picking uses an artificial vision system to help retrieve components that have been
randomly stored in a bin. Another example is the metrological checking and
structural verification of hot steel products at a remote distance in a steel mill.
4. The system is developed for the initiation of subsequent action to
optimize the image acquisition or image feature extraction. Autonomous control
of image sensor as described in Chapter 16 (Paradigm Applications) for optimal
acquisition of ground information for dynamic analysis is a good example. It is
agreed that it is very effective and also very beneficial and favorable to acquire
ground information from a satellite for either military or civilian purposes.
However, due to the fixed orbit of the satellite and the fixed scanning mode of
the multispectral scanner (MSS), the way in which the satellite acquires ground
information is in the form of a swath. It is known that two consecutive swaths of
information scanned are not contiguously geographically. In addition, two
geographically contiguous swaths are scanned at times that differ by several
days. It happens that the target area of greatest interest falls either to the left or
right outside the current swath, Postflight matching of two or three swaths is thus
unavoidable for target interpretation, and therefore on-line processing will not be
possible. Off-line processing will be all right (very inefficient, though) when
dealing only with a static target. But the situation will become very serious if the
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information sought is for the dynamic analysis of strategic military deployment,
for example. Even when monitoring a slowly changing flood, information
obtained in this way would be of little use.

A desire has thus arisen to enlarge the viewing range of the scanner by
means of pattern recognition technique in order to acquire in a single flight all the
ground information of interest now located across two or three swaths. This
would not only permit on-time acquisition and on-line processing of the relevant
time-varying scene information, but would save a lot of postflight ground
processing See Chapter 16 for details.

Systems like this can have many applications. It can be designed in the
form of an open loop and also a closed loop. If the processed scene is for human
reference only, it is an open-loop system. If the processed image is used to help a
robot to travel around the room under a seriously hazardous environment, a
closed-loop system will be more suitable for the mobile robot.

To summarize, a pattern recognition system can be designed in any one of
the above mentioned four modes to suit different applications. A pattern
recognition system, in general, consists of image acquisition, image data
preprocessing, image segmentation, feature extraction, and object classification.
Results may be used for interpretation or for actuation. Image display in spatial
and transform domain at intermediate stages is also an important functional
process of the system.

1.3 CONFIGURATION OF THE PATTERN
RECOGNITION SYSTEM

1.3.1 Three Phases in Pattern Recognition

In pattern recognition we can divide an entire task into three phases: data
acquisition, data preprocessing, and decision classification, as shown in Figure
1.2. In the data acquisition phase, analog data from the physical world are
gathered through a transducer and converted to digital format suitable for
computer processing. In this stage, the physical variables are converted into a
set of measured data, indicated in the figure by electrical signal x(r) if the physical
variables are sound (or light intensity) and the transducer is a microphone (or
photocells). The measured data are then used as the input to the second phase
(data preprocessing) and grouped into a set of characteristic features xy as output.
The third phase is actually a classifier that is in the form of a set of decision
functions. With this set of features x, the object may be classified. In Figure 1.2
the set of data at B, C, and D are in the pattern space, feature space, and
classification space, respectively.
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The data-preprocessing phase includes the process of feature extraction.
The reason of including this feature extraction in this phase is simply because the
amount of data we have obtained in the data acquisition phase is tremendous and
must be reduced to a manageable amount but still carry enough discriminatory
information for identification.

1.3.2 Feature Extraction—An Important Component
in Pattern Recognition

Necessity of the Data Reduction

To process an image with a computer, we first need to digitize the image in the X
direction and also in the ¥ direction. The finer the digitization, the more vividly
close to the original will be the image. This is what we call the spatial resolution.
In addition, the larger the number of gray levels used for the quantization of the
image function, the more details will be shown in the display. Assume we have an
image of size 4 x 4 in. and would like to have a spatial resolution 500 dpi (dots
per inch) and 256 gray levels for image function quantization; we will have
2048 x 2048 x 8 or 33.55 million bits for the representation of a single image.
The data amount is very extensive.

The most commonly used and the simplest basic approach for image
processing is the convolution of an image with an array n x n (mask). Let us
choose n equal to 3 as an example. There will be 9 multiplication-and-addition
operations (or 18 floating-point mathematical operations) for each of the
2048 x 2048 or 4.19 million pixels, totaling to 75.5 x 10% mathematical opera-
tions. Assuming that 6 processes are required for the completion of the specific
image processing job, we would need to perform 75.5 millionx6 or 453 x 10°
operations—very high computational complexity. Say, in average, 20-pulse
duration time is needed for each mathematical operation and the Pentium III
500 MHz computer (state of the art technology) is used for the system. Then,
(453 x 10° x 20)/(500 x 10%) or 18s will be needed for the mathematical
computation of a single image without taking into consideration the time
needed for the data transfer between the CPU and the memory during the
processing. This amount of time will, no doubt, be much longer than the CPU
time, and may be 20 times as much. In order to speed up the processing of an
image, it is therefore necessary to explore a way to accurately represent the image
with much less amount of data but without losing any important information for
its interpretation.

FeaturesThat Could Best Identify Objects

It is known that when an image is processed through a human vision system, the
human vision system does not visualize the image (or an object) pixel by pixel.
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Instead, the human vision system extracts some key information that is created
through grouping related pixels together to form features. Features are in the form
of a list of description called feature vector, much less in number but carrying
enough discriminating information for identification.

Images containing objects that have been categorized. Proper selection of
features is crucial. A set of features may be very effective for one application, but
may be of little use for another application. The object (pattern) classification
problem is more or less problem oriented. A proper set of features would come
out through thorough studies on the object, the preliminary selection of the
possible and available features and final sorting out the most effective ones after
evaluating each of these features for its effectiveness in the classification. See
Chapter 7 (Dimensionality Reduction and Feature Selection) for a detailed
discussion on feature ordering.

For objects that have been categorized, feature can be referred to as parts of
the image with some special properties. Lines, curves, and texture regions are
examples. They are local features, so called to differentiate it from global feature
such as average gray level. As a local feature, it should be local, meaningful, and
detectable parts of the image. By meaningfil we mean that the features are
associated to interesting scene element via the image formation process. By
detectable we mean that location algorithms must exist to output a collection of
feature descriptors, which specify the position and other essential properties of
the features found in the image. See the example given in Section 1.2 which
describes the precise matching of gears and pinions. OQur concerns focus on
whether the pitches between teeth and the profiles of the teeth are the same (or at
least within a tolerance) in both the gears and the pinions. Our problem is now to
extract these local features for their structural venfication.

Figure 1.3 shows a microscopic image of a vaginal smear, where (a) shows
the shape of normal cells, while (b) shows that of abnormal cells. A computer
image processing system with microscope can be developed to automate the
screening of the abnormal cells from the normal ones during general physical
examination.

There are many other applications that fall into this category, for instance,
the recognition of the alphanumeric characters, bin-picking of manufactured parts
by robots, etc.

Scenic images containing objects best represented by their spectral
characteristics. Many objects that are not human-made, cannot be well repre-
sented by their shapes, especially for those objects that are continuously growing
with time. Agricultural products are good examples. For those objects some other
features should be extracted for identification. Research shows that different
agricultural objects possess different spectral characteristics. Agricultural
products such as corn, wheat, and bean respond differently to the various
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(a)

FIGURE 1.3 Cytological images of vaginal smears. (a) Normal vaginal exfoliated cells, pink and light blue colors
represent respectively the acidophilic and cosinophilic characteristics of these cells. The original image is a color image. (b)
Cancerous cells with red blood cells on the background. The original image is a color one.
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FIGURE 14 The optical spectrum in perspective.

wavebands of the optical electromagnetic wave spectrum (see Figure 1.4). For
this reason, strength of responses in some particular wavebands can then be
selected as feature(s) for classification.

Remote sensing is concerned with collecting data about the earth and its
environment by means of visible and nonvisible electromagnetic radiation.
Multispectral data are gathered, with as many as 24 (even more) bands being
acquired simultaneously. Information on ultraviolet, visible, infrared, and thermal
wavelengths are collected by passive sensors, €.g., multispectral scanners (MSS).
Active sensors exploit microwave radiation in the form of synthetic aperture radar
(SAR). This can detect objects that are invisible to optical cameras.

Multispectral sensors (satellite or airborne) provide data in the form of
several images of the same area on the Earth’s surface, through different spectral
bands. For a specific application, selection of information from few spectral
bands might be sufficient. Effective classification rests on smart choice of the
spectral bands, not necessary to be large in number. What is important is to select
the most important ones from them for a particular application to reduce the
number of features and at the same time retain all or most of the class
discriminatory power. Assume that three proper features have already been
selected for the above-mentioned crop-type problem. Then, a three-dimensional
graph can be plotted in which pixels corresponding to different classes of crop
(corn, wheat, bean) will cluster together in the three-dimensional space as three
distinct clusters and they will be clearly separated from each other as indicated in
Figure 1.5. The classification problem then becomes finding the clusters and the
separating boundaries between all these classes. The yearly yields of each of these
agricultural products can then be estimated, respectively, from their volumes in
the three-dimensional image.

Beyond the estimation of the agricultural crop estimation, there are many
fields that can benefit from remote sensing technology. To name a few, this
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FIGURE 1.5 Predicting the yearly yields of agricultural product via satellite image.

technique has been successfully used to survey large areas of inaccessible and
even unmapped land to identify new resources of mineral wealth. This technique
has also been used to monitor large or remote tracts of land to determine its
existing use or future prospects. Satellite data are very useful for short-term
weather forecasting, and important in the study of long-term climate changes
such as global warming.

Feature Extraction

By feature extraction we mean to identify the inherent characteristics found
within the image acquired. These characteristics (or features, as we usuvally call
them) are used to describe the object, or attributes of the object. Feature extraction
operates on a two-dimensional image array and produces a feature vector.

Feature directly extracted from pixels. Extraction of features is to convert
the image data format from spatially correlated arrays to textual descriptions of
structural and/or semantic knowledge. We first bilevel the image, and then group
the pixels together with the 8-connectivity convention. Check and see whether it
provides some meaningful information. Many of the features of interest are
concerned with the shape of the object. Shape of an object or region within an
image can be represented by features gleaned from the boundary properties of the
shape and/or from the regional properties. For example, structural verification of
a pinion could utilize features like diameter of the pinion, number of teeth in the
pinion, pitch between the teeth, and the contour shape of the teeth.
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Derived features. For some applications, it is more convenient and
effective to use computed parameters as features for classification. Such features
are called derived features. Shape factor (perimeter? /area) is one of them. It is a
dimensionless quantity, invariant of scale, rotation as well as translation, making
it a useful and effective feature for identifying various shapes like circle, square,
triangle, and ellipse.

Moments are also examples of derived features. Moments can be used to
describe the properties of an object in terms of its area, position, and orientation.
Let f(x, y) represent the image function or the brightness of the pixel, either 0
(black) or 1 (white); x and y are the pixel coordinates relative to the origin. The
zero- and first-order moments can be defined as

myy = D> f(x,¥) Zero-moment, it is the same as the object area
for a binary image

mig=2>. 9 x-f(x,y)  First-order moment with respect to y axis
myy =22y flx,y) First-order moment with respect to x axis

Centroid (center of area, or center of mass), a good parameter for specifying the
location of an object, can be expressed in terms of moments as

Mo “
X =-2 and y =2

nyg Moo

where x’ and )’ are, respectively, the coordinates of the centroid with respect to
the origin.

Features obtained from spectral responses. Most real-world images are
not monochromatic, but full color. A body will appear white to the observer when
it reflects light that is relatively balanced in all visible wavelengths. On the other
hand, a body that favors reflectance in a limited range of visible spectrum will
exhibit some shades of color. All colors to the human eye are seen as variable
combinations of three so-called primary colors, red (R), green (G), and blue (B).
However, these three R, G, and B sensors in the human eye overlap considerably.
For the purpose of image processing, a composite color image can be decom-
posed into three component images, one in red, one in green, and one in blue.
These three component images can be processed separately, and then recombined
to form a new image for various applications.

When we scan an image with a 12-channel multispectral scanner, we
obtain, for a single picture point, 12 values, each corresponding to a separate
spectral response. The pattern x will be a vector of 12 elements in a 12-
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dimensional space. Twelve images will be produced from one scan. Each image
corresponds to a separate spectral band.

Xy2

14 REPRESENTATION OF PATTERNS AND
APPROACHES TO THEIR MACHINE
RECOGNITION

14.1 Patterns Represented in Multidimensional
Vector Form

As discussed in Section 1.3.1, there will be a set of collected, measured data after
data acquisition. If the data to be analyzed are physical objects or images, the data
acquisition device can be a television camera, a high-resolution camera, a
multispectral scanner, or other device. For other types of problems, such as
economic problems, the data acquisition system can be a data type.

One function of data preprocessing is to convert a visual pattern into an
electrical pattern or to convert a set of discrete data into a mathematical pattern so
that those data are more suitable for computer analysis. The output will then be a
pattern vector, which appears as a point in a pattern space.

To clanfy this idea, let us make a simple visual image as the system input.
If we scan an image with a 12-channel multispectral scanner, we obtain, for a
single picture point, 12 values, each corresponding to a separate spectral
response. If the image is treated as a color image, three fundamental color-
component values can be obtained, each corresponding, respectively, to a red,
green, or blue spectrum band.

Each spectrum component value can be considered as a variable in n-
dimensional space, known as pattern space, where each spectrum component is
assigned to a dimension. Each pattern then appears as a point in the pattern space.
It is a vector composed of n component values in the n-dimensional coordinates.
A pattern x can then be represented as

X1
X
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where the subscript n represents the number of dimensions. If # < 3, the space
can be illustrated graphically. Pattern space X may be described by a vector of m
pattern vectors such that

T
Xi Xip Xy v Xy
T
X3 X231 X2 ... Xy
X Pt ey
x! X X X
m ml n2 e mn

where the superscript 7 after each vector denotes its transpose, the x! =
(Xj1s X2, .- > X)), = 1,2, ..., m, represent pattern vectors.

The objective of the feature extraction shown in Figure 1.6 is to function as
the dimensionality reduction (see Section 1.3.2). It converts the original data to a
suitable form (feature vectors) for use as input to the decision processor for
classification. Obviously, the feature vectors represented by

x’.T:(x“,xiz,.._,xrr) i=1,2,....m

are in a smaller dimension (i.e., »r < n).

The decision processor shown in Figure 1.6 operates on the feature vector
and yields a classification decision. As we discussed before, pattern vectors are
placed in the pattern space as “points,” and patterns belonging to the same class
will cluster together. Each cluster represents a distinct class, and clusters of points
represent different classes of patterns. The decision classifier implemented with a
set of decision function serves to define the class to which a particular pattern
belongs.

The inputs to the decision processor are a set of feature data (or feature
vectors). The output of the decision processor is in the classification space. It is
M-dimensional if the input patterns are to be classified into M classes. For the
simplest two-class problem, M equals 2; for aerial-photo interpretation, M can be
10 or more; and for alphabet recognition M equals 26. But for the case of Chinese
character recognition, M can be more than 10,000. In such a case, other
representations have to be used as supplements.

Both the preprocessor and the decision processor are usually selected by the
user or designer. The decision function used may be linear, piecewise linear,
nonlinear, or some other kind of functions. The coefficients (or weights) used in
the decision processor are either calculated on the basis of complete a priori
information of statistics of patterns to be classified, or are adjusted during a
training phase. During the training phase, a set of patterns from a training set is
presented to the decision processor, and the coefficients are adjusted according to
whether the classification of each pattern is correct or not. This may then be
called an adaptive or training decision processor. Note that most of the pattern
recognition systems are not adaptive on-line. On-line pattern recognition systems
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are being developed. Note also that the preprocessing and decision algorithms
should not be isolated from each other. Frequently, the preprocessing scheme has
to be changed to make the decision processing more effective. Some attempts
have been made to simulate the human recognition system. Human recognition
system has the capabilities, of association, categorization, generalization, classi-
fication, feature extraction, and optimization. These capabilities fall into three
broad categories, namely, (1) searching, (2) representation, and (3) learning. What
we try to do is to design a system that will be as capable as possible.

As discussed previously, a priori knowledge as to correct classification of
some data vectors is needed in the training phase of the decision processor. Such
data vectors are referred to as prototypes and are denoted as

i
k=1,2,....M

=2
i m=1,2,...,N,

o

where k =1,2,..., M indexes the particular pattern class; m=1,2,..., N,
indicates the mth prototype of the class w;; and i=1,2,..., 7 indexes its
component in the n-dimensional pattern vector. M, N,, and n denote, respectively,
the number of pattern classes, the number of prototypes in the kth class w,, and
the number of dimensions of the pattern vectors.

Prototypes from the same class share the same common properties and thus
they cluster in a certain region of the pattern space. Figure 1.7 shows a simple

two-dimensional pattern space. Prototypes z}, z2,...,z)'! cluster in w; proto-

types of another class, z), z3, ..., z)2, cluster in another region of the pattern
space w,. N, and N, are the number of prototypes in classes w; and w,,
respectively. The classification problem will simply be to find a separating surface
that partitions the known prototypes into correct classes. This separating surface is
expected to be able to classify the other unknown patterns if the same criterion is
used in the classifier. Since patterns belonging to different classes will cluster into
different regions in the pattern space, the distance metric between patterns can be
used as a measure of similarity between patterns in the n-dimensional space.

Some conceivable properties between the distance metrics ¢can be enumer-
ated; thus,

d(x,y) =d(y, x)

d(x,y) < d(y, z) +d(z,x)
d(x,z) > 0

d(x,y)=0 iffy=x
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FIGURE 1.7 Simple two-dimensional pattern space.

where X, y, and z are pattern vectors and d(.) denotes a distance function. Details

regarding pattern classification by this approach are presented in subsequent
chapters.

14.2 Patterns Represented in Linguistically
Descriptive Form

We have just discussed representing a pattern by a feature vector. The recognition
process of patterns becomes to partition the feature space. This approach is
commonly referred to as the decision theoretic approach. This basis of this
approach is the meaningful representation of the data set in vector form. There
are, on the other hand, patterns whose structural properties are predominant in
their descriptions. For such patterns, another approach, called syntactic recogni-
tion, will probably be more suitable. The basis of the syntactic approach is to
decompose a pattern into subpatterns or primitives. The recognition of a pattern s
usually done by parsing the pattern structure according to a set of syntax rules.
Figure 1.8a shows a simple pictorial pattern composed of a triangle and a
pyramid. Both face F and triangle T are parts of object 4. Triangles T} and T, are
parts of object B. The floor and wall together form the background of the scene.
Objects 4 and B together with the background constitute the whole scene, as
shown in Figure 1.8a. Figure 1.8b shows its hierarchical representation.

Because of its strong structural regularity, the image of the human
chromosome is also a good example of the use of syntactic description. There
might be variations in the lengths of arms, but the basic will be the same for
certain types of chromosomes, such as submedian or telocentric ones. These
variations can easily be recognized visually.

Figure 1.9 shows the structural analysis of a submedian chromosome.
Figure 1.9a shows bottom-up parsing on a submedian chromosome. Figure 1.9b
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FIGURE 1.8 Hierarchical representation of a simple scene.

shows its structural representation, and Figure 1.9c shows the primitives that we
use for shape description.

When the boundary of the chromosome is traced in a clockwise
direction, a submedian chromosome can be represented by a string such as
abcbabdbabcbabdb if the symbols a, b, ¢, and d are suggested for the primitives
shown in Figure 1.9¢c. By the same token, a telocentric chromosome @ can be
represented with ebabcbab. That 1s, a certain shape will be represented by a
certain string of symbols. In the terminology of syntactic pattern recognition, a
grammar, or set of rules of syntax, can be established for the generation of
sentences for a certain type of chromosome. The sentences generated by two
different grammars, say G, and G,, will represent two different shapes; but the
sentences generated by the same grammar, say G,, represent the same category
(e.g., submedian chromosomes), with tolerances for minor changes in shape
proportion.
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FIGURE 1.9 Structure analysis of a submedian chromosome: (a) bottom-up parsing;
(b) structural representation; (c) primitives used for the analysis.

Chinese characters are another good example of the use of syntactic
description. They were created and developed according to certain principles,
such as pictophonemes and ideographs. They are composed of various primitives
and possess strong structural regularities. With these regularities and semantics in
mind, thousands of Chinese characters of complex configuration can be segre-
gated and recombined. Thus, the total amount of information will be greatly
compressed. Thousands of complex ideographs can then be represented by a few
of semantic statements of morphological primitives. It can easily be seen that the
total number of fundamental morphological primitives is far much less than 1000,
and the complexities of the primitives are also much simpler than the ornginal
characters. It is possible, in the meantime, for “heuristics” to play an important
role in pattern recognition and grammatical inference on these characters. In
addition to structural description of the whole character, the structural approach
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has been applied to primitive description and extraction for Chinese character
recognition.

1.4.3 Approaches to Best Classify Objects for the
Above Mentioned Data Categories

Approaches for pattern (or object) classification may be grouped into two
categories: (a) the syntactic or structural approach and (b) the decision theoretic
approach. For some extreme problems the syntactic or structural approach is most
suitable, whereas for some other extreme problems the decision approach is more
suitable. The selection of approach depends primarily on the nature of the data set
involved in a problem. For those problems where structural information is rich, it
might be advantageous to use the syntactic method to show its power for problem
description. If the data involved in the problem are better expressed in vector form
and at the same time structural information about the patterns is not considered
important, the decision theoretic method is recommended for its classification.
However, it is not good to be too absolutistic. There are many applications falling
half-way between these two extreme cases. In such cases, these two approaches
might complement each other. It might be easier or more helpful to use the
decision theoretic method to extract some pattern primitives for the syntactic
approach, particularly for noisy and distorted patterns. On the other hand, the
syntactic method can help to give a structural picture instead of the mathematical
results alone obtained through the use of the decision theoretic approach. A
comprehensive combination of these two approaches may result in an efficient
and practical scheme for pattern recognition. In this book, we will also introduce
neural network approach to solve some nonlinear classification problems.

1.5 PARADIGM APPLICATIONS

The pattern recognition technique can be applied to more types of problems than
can be enumerated. Readers should not feel restricted to the following applica-
tions, which are given for illustration only.

1.5.1 Weather Forecasting

In weather forecasting, the pressure contour map over a certain area (Figure 1.10)
constitutes the important data for study. From previous experience and a priori
knowledge, several patterns (15 or more, depending on the area) can be specified
on the sets of data maps. The weather forecasting problem then becomes to
classify the existing pressure contour patterns and to relate them to various
weather conditions. Automatic and semiautomatic classifications by computer
become necessary when the number of maps builds up.
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FIGURE 1.10 Example of a pressure contour map over a certain area for weather
forecasting studies.

The two methods frequently used for pressure contour map classification
are the correlation method and the principal component analysis (Karhunen-
Loeve) method. Both of these methods will give global features. Application
of the syntactic method for weather forecasting problems, such as the use of
string and/or tree representation for pressure contour maps, is also under
investigation.

1.5.2 Recognition of Handprinted Characters

Applications of handprinted character recognition are mainly for mail sorting.
This problem has been studied for a long time. Due to the wide variations that
exist in handwriting (see Figure 1.11 for samples printed by different persons),
the correct recognition rate 1s still not high enough for practical use.

Numerous approaches have been suggested for the recognition of hand-
printed characters. So far, 121 constrained characters, including 52 uppercase and
lowercase alphabetic letters, 10 numerals, and other symbols, are reported to be
recognizable.

Machine recognition of more sophisticated characters such as Chinese
characters is also under investigation,

1.5.3 Speech Recognition

Speech recognition has numerous applications. One of these is its use to
supplement manual handling in mail sorting. When unsorted mail screened
from the sorting line is more than manual control operation can handle, speech
recognition can be used as a supplementary measure. The essentials of such
methods are shown in Figure 1.12.
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FIGURE 1.11 Samples of handprinted numerals prepared by a variety of people.

Electrical signals converted from spoken words are first filtered and
sampled through tuned band-pass filters with center frequencies from 200 to
7500 Hz. Several specific parameters, such as spectral local peaks, speech power,
and those representing the gross pattern of spectrum, are extracted for segmenta-
tion and phoneme recognition. Errors that have occurred during segmentation and
phoneme recognition are corrected by means of preset phoneme correction rules,
and then similarity computation is carried out and words of maximum similarity
chosen for the solution.

1.54 Analysis of ECG to Help Diagnose Heart
Activity

Figure 1.13 shows a typical ECG record taken with a cardiograph. Patient’s
information on his/her heart condition and physician’s comments can be easily
recorded with the waveforms in a format easily filed for future reference. Figure
1.14 gives the enlarged version of ECG shown in Figure 1.13, as well as the
measured ECG parameters. These parameters are very useful for the diagnosis on
the patient’s heart activity.

1.5.5 Medical Analysis of Chest X-ray

Occupational disease cause workers considerable concern as to job selection.
Early cures for such diseases depend on early and accurate diagnosis. An example



26 Chapter1

spoken word input

Extraction of
speech spectrum parameters

Segmentation and
phoneme recognition

Rules on

Error correction
phoneme correction

Similarity computation - Word dictionary

recognized word
output

FIGURE 1.12 Schematic diagram of a speech recognition system.

is coal miners’ pneumoconiosis, a disease of the lungs caused by continual
inhalation of irritant mineral or metallic particles. The principal symptom is the
descent of the pulmonary arteries. (See Figure 1.15 for an abnormal chest x-ray of
a patient.) Accurate diagnosis depends on accurate discrimination of the small
opacities of different types from the normal pulmonary vascularity pattern. These
opacities appear here and there, sometimes in the interrib space and sometimes in
the rib spaces. Those appearing in the rib spaces, overlapped by shadows cast by
the major pulmonary arteries, are very hard to recognize. Pattern recognition
technique can usefully be applied to this kind of problem.
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FIGURE 1.14 Measured ECG parameters for ECG shown in Figure 1.13.

To perform this task, the chest x-ray has to be processed to eliminate the
major pulmonary arteries, the rib contours, and so on, to provide a frame of
reference for the suspicious objects detected. The differences in various texture
features are used to classify coal miners’ chest x-rays into normal and abnormal
classes. Four major categories have been established to indicate the severity of the
disease according to the profusion of opacities in the lung region.
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|

FIGURE 1.15 Chest x-ray of a pneumoconiosis patient. (Courtesy of C.C. Li, Depart-
ment of Electrical Engineering, University of Pittsburgh.)

1.5.6 Satellite and Aerial-Photo Interpretation

Satellite and/or acrial images are used for both military and civil purposes.
Among the civil applications, the remote sensing of earth resources either on or
under the surface of the Earth is an important topic for study, especially during
the era when we are interested in the global economy. Remote sensing has a wide
variety of applications in agriculture, forestry, city planning, geology, geography,
and railway line exploitation. The data received from the satellite or from the tape
recorded during airplane flight is first restored and enhanced in image form, and
then interpreted by a specialist. The principal disadvantage with visual inter-
pretation lies in the extensive training and intensive labor required. In addition,
visual interpretation cannot always fully evaluate spectral characteristics. This is
because of the limited ability of the eye to discern tonal values on an image and
the difficulty an interpreter has in analyzing numerous spectral images simulta-
neously. In applications where spectral patterns are highly informative, it is
therefore preferable to analyze numerical rather than pictorial image data. For
these reasons, computer data processing and pattern classification will play an
increasingly important role in such applications. Both temporal and spatial
patterns are studied to meet different problem requirements. Details of these
applications will not be presented here, as a more detailed worked-out problem is
given later to illustrate some of the principles discussed in Chapter 5.
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Supervised and Unsupervised
Learning in Pattern Recognition

To classify a pattern into a category is itself a learning process. It is expected that
the pattern classification (or pattern recognition) system should have the ability to
learn and to improve its performance of the classification through learning. The
improvement in performance takes place over time in accord with some
prescribed measure. A pattern recognition system learns through iterative adjust-
ment of the synaptic weights and/or other system parameters. It is hoped that
after an iteration of the learning process the system will become a more
knowledgeable and effective system, and will produce a higher recognition rate.

To this end the pattern recognition system will first undergo a training
process. During the training process, the system is repeatedly presented with a set
of prototypes, that is, with a set of input patterns along with the category to which
each particular pattern belongs. Whenever an error occurs in the system output,
an adjustment on the system parameters (i.e., the synaptic weights) will follow.
After all the prototypes have been correctly classified, then let the system go free
by itself to classify any new pattern that has not been seen before but which, we
know, belongs to the same population of patterns used to train the system. If the
system is well trained (i.e., when the number of prototypes are properly chosen
and all the prototypes are correctly classified), the system should be able to

29
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correctly classify this new pattern and many other patterns like this. Pattern
classification as described above is called a supervised learning. The advantage of
using this supervised learning system to perform the pattern classification 1s that
it can construct a linear or a nonlinear decision boundary between different
classes in a nonparametric fashion, and therefore offer a practical method for
solving highly complex pattern classification problems.

It should be noted that there are many other cases where there exists no a
priori knowledge of the categories into which the patterns are to be classified. In
such a situation, unsupervised learning will play an important role in the pattern
classification. In unsupervised learning (also called clustering), patterns are
associated by themselves into clusters based on some properties in common.
These properties are sometimes known as features.

Figure 2.1 indicates the main difference between supervised and unsuper-
vised learning processes in pattern recognition. In the supervised pattern
recognition there is a teacher which provides a desired output vector d for
every prototype vector z used for training, or a set of (z, d) pairs for the training
of the system as (z,, d,); (z,, d,); (z;. d3); ...5 (zZy, dpy).

When a prototype z is presented to an untrained system (or not yet
completely trained system), an error will occur. System parameters will then be
adjusted as discussed to change the output response f{(z, w) to best approximate
the desired response vector d, which is supplied by the teacher in an optimum
fashion.

dy, dy,....dn
- » Teacher
2,7,....Iy Input pattern Output response
———3 System | .
prototypes Actual output
respanse
A +
- Pattemns are associated
System )

Y

by themselves

( fZ;, W)

Error signal
ZT=1Zi1, Zig,-- . Zig] i=1,2,...,N
47 ~(dj}, di2,....din]
(a) ®

FIGURE 2.1 Block diagrams of supervised and unsupervised learning processes: (a)
supervised learning; (b) unsupervised learning.
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The iterative adjustment of the system parameters is based on a certain
number of properly selected prototypes in the form of a listed pairs, namely,
((z), d)), (z,,d,), (z3,d3),...,(zy, dy)}. The proper number of prototypes
needed for the training of a particular system will be discussed in Chapter 4.

When a prototype vector z; from the set of (z, d) pairs is input to the
system, an error occurs if the actual output response is a value other than d;. Let
us define the discrepancy between the desired response vector d (d; in this case)
and the actual output response f(z, w) produced by the learning system (say d;)
as the loss function L,. The conditional average risk function r(z) can then be
defined as

N
r@ =Y Lypdlz) k=1.2... Nandi#k
=1

where p(d;|z) is the probability that z is the same as d, from the (z, d) pairs. This
is actually the a posteriori probability. It is the conditional probability distribution
of d, given z. The goal of the learning process is to minimize the risk function
r(z) over the training process. See Chapter 5 for detailed discussions on the
formulation of the learning problem with statistical design theory.

In the supervised learning, the system parameters are adjusted whenever
there is a discrepancy between the desired response d and the actual output
response. The error signal can be evaluated as the difference between the actual
output response of the system f(z, w) and the desired response d. The adjustment
is carried out in an iterative step-by-step fashion to help the system emulate the
teacher. When this condition is reached, the system will be left free completely by
itself to perform classification on those patterns that are unknown of their
belongings, but are known to belong to the same population of patterns used
for the system training.

The form of supervised learning that we have just described is an error-
correcting learning. Any given operation of the system under the teacher’s
supervision is represented as a point on the error surface. When the system
improves its performance over time via learning from the teacher, the operating
point should move down successively toward a minimum point of the error
surface. Our job now becomes to design an algorithm to minimize the cost
function of interest with an adequate set of input-output pairs for mapping.
Chapter 4 of this book will show how to move the operating point toward a
minimum point of the error surface.

Unsupervised learning appears under different names in different contexts.
Clustering is the name most frequently used. We can find names like numerical
taxonomy in biology and ecology, fypology in social sciences, and partition on
graph theory. In unsupervised or self-organized learning there is no class labeling
available, nor do we know how many classes there are for the input patterns.
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There are no specific examples of the function to be learned by the system. These
input patterns mainly associate themselves naturally based on some properties in
common. Our major concern now is to discover similarities and dissimilarities
among patterns and to “reveal” the organization of patterns into “sensible”
clusters (groups). It is expected that patterns belonging to the same cluster should
be very close together in the pattern space, while patterns in different clusters
should be farther apart from one another. See Chapter 6 (Clustering Analysis and
Unsupervised Learning) for detailed discussions on the intraset and interset
distances.

In this section we have briefly described what we call supervised and
unsupervised pattern recognition. In those cases where there is available a set of
training data set (i.e., a set of appropriate input-output pairs), the supervised
pattern recognition approach can be adepted. The classifier can be designed with
this known information. However, for many situations no such a priori informa-
tion is available. All we have is only a set of feature vectors. Our job now is to set
up some measures and then design an algorithm to search for similarities and
dissimilarities among these pattern vectors and then group patterns that possess
similar features together to form clusters. That is to say, pattern vectors group
themselves by natural association. For such kinds of problems, unsupervised
learning (or clustering) will play an important role. A major issue in the
unsupervised pattern recognition is to define the “similarity” between two feature
vectors and choose an appropriate measure for it. Another issue of importance is
to choose an algorithmic scheme that will cluster the vectors on the basis of the
adopted similarity measure., Chapter 6 is dedicated to review the currently
available algorithms and make some suggestions for various kinds of pattern
data sets. Examples include data sets with different density distributions, data sets
with a neck or valley between them, data sets in a chain form, etc.

In this book we will first discuss the supervised learning and the various
algorithms currently used, and then come to the unsupervised learning (cluster-
ing). Use of neural network for pattern recognition will also be discussed.
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Nonparametric DecisionTheoretic
Classification

Supervised pattern recognition (supervised learning) algorithms are often cate-
gorized into two approaches: parametric and nonparametric approaches. For
some classification tasks, pattern categories are known a priori to be characterized
by a set of parameters. The approach designed for such kinds of tasks is the
parametric approach. It defines the discriminant function by a class of probability
densities defined by a relatively small number of parameters.

There exist many other classifications in which no assumptions can be
made about the characterizing parameters. Approaches designed for those tasks
are called nonparametric. Although some parameterized discriminant functions
(e.g., the coefficients of a multivariate polynomial of some degree) are used in
nonparametric methods, no conventional form of the distribution is assumed.
This makes it (the nonparametric approach) different from the parametric
approach. In the parametric approach, pattern classes are usually assumed to
arise from a multivariate Gaussian distribution where the parameters are the mean
and covariance.

In this chapter emphasis is on the discussion of the nonparametric decision
theoretic classification. Based on the nature of the problem, we are going to
discuss several related topics in succession. To start, some technical definitions of
decision surfaces and discriminant functions are introduced, and then the
discussion is directed to the general form of the discriminant function, its
properties, and classifier based on this sort of discriminant function. Cases
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dx(x)—dxx)=0

wy

A
fe
di(x)—dxx)=0

FIGURE 3.1 One-dimensional pattern space.

dealing with linear discriminant functions, piecewise linear discriminant func-
tions, and nonlinear discriminant functions are discussed separately. A discussion
of ¢ machines and their capacity to classify pattems follows to generalize the
nonparametric decision theoretic classification method. At the end of this chapter,
potential functions used as discriminant functions are included to give a more
complete description of the nonparametric decision theoretic classification.

3.1 DECISION SURFACES AND DISCRIMINANT
FUNCTIONS

As mentioned in Chapter 1, each pattern appears as a point in the pattern space.
Patterns pertaining to different classes will fall into different regions in the pattern
space. That is to say, different classes of patterns will cluster in different regions,
and can be separated by separating surfaces. Separating surfaces, called decision
surfaces, can formally be defined as surfaces, which could be found from
prototypes (or training samples) to separate these known patterns in the n-
dimensional space, and are used to classify unknown patterns. Such decision
surfaces are called hyperplanes, and are (n — 1)-dimensional. When » = 1, the
decision surface is a point. As shown in Figure 3.1, point 4 is the point that
separates classes w; and w,, and point B is the separating point between w, and
w;. When n = 2, the decision surface becomes a line.

wixy +wyx, +wy =0 (3.1

as shown in Figure 3.2. When n = 3, the surface is a plane. When n =4 or
higher, the decision surface is a hyperplane represented by

WiX] + WaXy + Wyxy 4 -+ w,x, +w, =0 (3.2)
expressed in matrix form as
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o d(x) > dj(x)
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dk(x) < dj(x) dy(x) - di(x) =0

decision surface

FIGURE 3.2 Two-dimensional pattern space.

where
[ w, X
‘Wz x2
w= : and X =
wn xn
\_ Wn-H 1

w and x are, respectively, called the augmented weight vector and the augmented
pattern vector. The scalar term w,_, has been added to the weight function for
coordinate translation purposes. To make the equation a valid vector multi-
plication, the input vector x has been augmented to become (n + 1)-dimensional
by adding x,,, = 1. This will allow a translation of all linear discriminant
functions to pass through the origin of the augmented space when desired.

A discriminant function is a function d(x) which defines the decision
surface. As shown in Figure 3.2, d;(x) and d;(x) are values of the discriminant
function for patterns x, respectively, in classes k and ;. d(x) = dj(x) — d;(x) = 0
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di(x)

da(x)

di(x)

FIGURE 3.3 Schematic diagram of a simple classification system.

will then be the equation defining the surface that separate classes & and ;. We can
then say that

dy(x) > di(x) Vx € w,
Vitkj=12,....M

A system can then be built to classify pattern x, as shown in Figure 3.3. For a two-
class problem

di(x) = dy(x) (3.5)
or
d(x) =d|(x) —d,(x) =0 (3.6)

will define the separating hyperplane between the two classes.

In general, if we have M different classes, there will be M(M —1)/2
separating surfaces. But some of the separating surfaces are redundant: only
M — 1 are needed to separate the M classes. Figure 3.4 shows the number of
separating surfaces as a function of the number of categories to be classified in a
two-dimensional pattern space. From Figure 3.4a we can see that the decision
surface separating the two categories is a line. On the line, d(x) = 0; below this
separating line, d(x) > 0; and above this line, d(x) < 0. Thus the line d(x) =0
separates two different classes. Similarly, Figure 3.4b is self-explanatory. Note
that in the cross-hatched region, where d,(x) < 0 and d,(x) < 0, patterns belong
neither to w, nor to w,. This region may then be classified as w,. The same thing
happens in Figure 3.4c: Patterns falling in the cross-hatched portion of the plane
do not belong to category 1, 2, or 3, and thus form a new category, say w,.
Portions not mentioned in this pattern space are indeterminate regions.

Example. For a two-class problem (M = 2), find a discriminant function
to classify the two patterns x, and x, into two categories.

X1=<£11‘ al’ld Xz'—:}g
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FIGURE 3.4 Separating surfaces in a two-dimensional pattern space.

Let us try d(x) = x; — %xz — 2, and see whether it can be used as the separating

line for these two patterns. Substituting the augmented vectors of x; and x, into
d(x), we find that

dx)=w-x;, =(1 __% -2)|4|=-3<90

[am—

dx;,)=w-x, =(1 — +1 >0

" |—
I
3]
o’
— N A
il

Then, the pattern x; can be classified in one category, and x; in another category
according to this discriminant function.
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3.2 LINEAR DISCRIMINANT FUNCTIONS

As mentioned in Section 3.1, patterns falling in different regions in the pattern
space can be grouped into different categories by means of separating surfaces
which are defined by discriminant functions. The discriminant function may be
linear or nonlinear according to the nature of the problem.

In this section we start by discussing the general form of the linear
discriminant function, and then apply it to the design of the minimum distance
classifier. Linear separability will also be discussed.

3.2.1 General Form
The linear discriminant function will be of the following form:
difX) = wix) + WXy + -+ WXy Wy 1 X (3.7)

Put in matrix form,

T
di(x) = wix (3.8)
where
Wil X
Wia X2
wk = X =
Wi Xy
Wk,n+l 1

and x,,, = 1 in the augmented x pattern vector. For a two-class problem where
M =2, the decision surface is

dx) =wix, —wix, =(w, —w,)'x =0 (3.9)

It is a hyperplane passing through the origin in an augmented feature space for
the reason discussed previously.

3.2.2 Minimum Distance Classifier

Although it is one of the earliest methods suggested, the minimum distance
classifier is still an effective tool in solving the pattern classification problem. The
decision rule used in this method is

X € w; if D(x,z;) = rnkinD(x, ) k=12,....M (3.10)
where D(.) is a metric called the Euclidean distance of an unknown pattern x from
z;, and z; is the prototype average (or class center) for class w;. Then

D(x.z) = |x — 2] @3.11)
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Remembering that if

D(x.z;) > D(x, ;) Vi k (3.12)
then

D’(x.z) > D(x.z;) (3.13)

is true for most cases. In other words, we can use D? to replace D in the decision
rule above. Then we have

DX(x,z,) = |x — 7| (3.14)
Put in matrix form, we have

D(x, Z) =(x— zk)T(x —Zp)

T

3.15)
=x"x—-2x"z, + 7]z, (

after expanding. On the right-hand side of the expression above, x”x is constant
for all k, and therefore can be eliminated. Thus, to seck the minimum of D(x, z;)
is equivalent to seeking

n'gn[—2xrzk +zlz,] (3.16)

or alternatively, to seeking

mfx[xrzk -izlz,]  k=1.2...., M (3.17)

which is the decision rule for the minimum distance classifier. The discriminant
function used in the classifier can then be expressed as

di(x) =x"zg, —Lzfz, =xTz, — iz, P =x"w (3.18)

where

S S

[N]
el

1
2!

i 2
—§|3k|

and x is an augmented pattern vector. Note that the decision surface between any
two classes w; and w; is formed by the perpendicular bisectors of z; — z; shown
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FIGURE 3.5 Geometrical properties of the decision surfaces.

by dashed lines in Figure 3.5. The proof for this is not difficuit. From Eq. (3.18),
the decision surface between z, and z, is

d(x) = x"(z, — 7)) =} (22, —2]2) = 0 (3.19)

Obviously, the midpoint between z, and z, is on the decision surface. This can be
shown by direct substitution of this midpoint into Eq. (3.19), which shows that
the equation is satisfied. Similarly, we can find that all other points on the
boundary surface (a line in this case) also satisfy Eq. (3.19). It can also be proved

that the vector (z; —z,) 1s in the same direction as the unit normal to the
hyperplane, which is

) —17

2 — 2] 20

Note also that the minimum distance classifier (MDC) uses a single point to
represent each class. This tepresentation would be all right if the class were
normally distributed with equal variances in all direction, as shown in Figure
3.6a. But if the class is not normally distributed with equal variances in all
directions, as shown in Figure 3.6b, misclassification will occur. Even if
D, < D,, point x should be classified to w, instead of w,. Similarly, in Figure
3.6¢, point x might be classified in class w4 by the MDC, but it is really closer to
w,. That is, single points do not represent classes w,, w,, and w, very well. This
can be remedied by representing a class with multiple prototypes. When each
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FIGURE 3.6 Possible misclassification by the MDC with a single prototype class
representation.

pattern category is represented by multiple prototypes instead of a single
prototype, then

D(x, w;) = m:r]ninN [D(x, z;')] (3.21)

where k represents the Ath category, m represents the mth prototype, and N,
represents the number of prototypes used to represent category k. Equation (3.21)
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gives the smallest of the distances between x and each of the prototypes of w;.
The decision rule then becomes

X € W if D(x, ;) = k_nllinM(x, wy) (3.22)

where D(x,w;) is given by Eq. (3.21). The discriminant function changes
correspondingly to the following form:

dx)= max X"zf L] k=1,2,.... M (3.23)

m=1....

3.2.3 Linear Separability

Some properties relating to the classification, such as linear separability of
patterns, are discussed next. Pattern classes are said to be linearly separable if
they are classifiable by any linear function, as shown in Figure 3.7a, whereas the
classes in Figure 3.7b and c are not classifiable by any linear function. Such types
of problems will be discussed in later chapters.

From Figure 3.7 we can see that the decision surfaces in linearly separable
problems are convex. By definition, a function is said to be convex in a given
region if a straight line drawn within that region lies entirely in or above the
function. The regional function shown in Figure 3.8a is said to be convex, since
straight lines ab and ac are all above the function curve, whereas that shown in
Figure 3.8b is not.

3.3 PIECEWISE LINEAR DISCRIMINANT
FUNCTIONS

So far, our discussion has focused on linearly separable problems. Linearly
separable problems seem relatively simple, but in our real world most problems
are linearly nonseparable, and therefore more effective approaches must be
sought. One way to treat these linearly nonseparable problems is to use piecewise
linear discriminant function. This is the topic of the next several sections.

3.3.1 Definition and Nearest-Neighbor Rule

A piecewise linear function is a function that is linear over subregions of the
feature space. These piecewise linear discriminant functions give piecewise linear
boundaries between categories as shown in Figure 3.9a. In Figure 3.9b the
boundary surface between class @, and class w, is nonconvex. However, it can be
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FIGURE 3.7 Linear separability between pattern classes: (a) classes w; and w; are
linearly separable; (b, c) classes w; and w; are not linearly separable.

(a) (b)

FIGURE 3.8 Convexity property of a function: (a) convex decision surface; (b) not
convex.
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(a) (b)

FIGURE 3.9 Piecew:se linear separability among different classes.
broken down into piecewise linear boundaries between these two classes w, and
@-,. The discriminant functions are given by

d(x) = max [d;' (x)] k=1,....M (3.24)

m=li,..., N£

that is, we find the maximum d}'(x) among the prototypes of class &, where N is
the number of prototypes in class & and

T 'y} 1 " i1
dy(x) = wiix) + wiaxy + - Fwpx, + Wi,

r (3.25)
m
=(wy) ¥
where
]
Wil
N
3]
wp = :
H
kn
1
koan+1
and
X
o)
x=1.
xll
1

Three different cases of the pattern classification problem can be enumerated:
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Case 1. FEach pattern class is separable from all other classes by a single
decision surface, as shown in Figure 3.10a, where several indeterminate regions
can be seen to exist.

Case 2. Each pattern class is pairwise separable from every other class by
a distinct decision surface. Indeterminate regions may also exist. In this case, no
class is separable from the others by a single decision surface. For example, w,
can be separated from w, by the surface d|;(x) = 0 and from w; by d|3(x) =0
(see Figure 3.10b). There will be M(M — 1)/2 decision surfaces which are
represented by

dy(x) = 0 (3.26)
di(x)=0
L ¢
IR -
d1<0
) c12>0
c13<()
IR
¥
IR
dr(x)=0
w3 111<()
(12<0
(13>0
(a)
11(x)—d2(x)=0
diax)=0 A100-dalx) () —d(x)=0
hi(x)=0

dax)-di(x)=0

(b) (c)

FIGURE 3.10 Three different cases in pattern classification: (a) each class is separable
from others by a single decision surface; (b) each class is pairwise separable from others by
a distinct decision surface; (c) same as part (b) but with no indeterminate regions.
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and
X € w; whend;; > 0,V) # i (3.27)

Case 3. Each pattern class is pairwise separable from every other class by
a distinct decision surface, but with no interdeterminate regions (this is a special
case of case 2; see Figure 3.10c). In this case, there are M decision functions and

dx)=w)'x  k=1,2,....M (3.28)

and

xew, ifdx)>dx),V#i (3.29)

3.3.2 Layered Machine

A two-layered machine is also known as a committee machine, so named because
it takes a fair vote for each linear discriminant function output to determine the
classification. That part to the left of the ) unit shown in Figure 3.11 is the first
layer and that to the right of it is the second layer. w,, w,, ..., wy are the different

n-dimensional weight vectors for each discriminant functions and are, respec-
tively,

T
W, = (Wll’ Wiae .oty Wln)
T
Wy =Wy, Wype ooy Wy,)
(3.30)
T _ W )
Wep = (Wpy Wpay .o Wy,

The first layer consists of an odd number of linear discriminant surfaces whose
outputs are clipped by the threshold logic unit as +1 or —1, depending on the
value of f(x) to describe on which half of the feature space the particular pattern
input falls. The second layer is a single linear surface with unity weight vector
used to determine to which class the particular pattern will finally be assigned.

When an adaptive loop is placed in the threshold logic unit for the training
of w, the threshold logic unit is called an adaptive linear threshold element
(ADALINE). When multiple ADALINEs are used in the machine, it is called a
MADALINE—a committee machine.

Let us take a simple two-class problem to interpret the machine geo-
metrically. Suppose that we have three threshold logic units in the first layer; i.e.,
R=13. wix=0, wx =0, and wix = 0 will define three hyperplanes in the
feature space, shown in Figure 3.12.

The layered machine will divide the pattern space geometrically into seven
regions. In Table 3.1 values are listed on w x, wlx, and w] x in each region, with
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FIGURE 3.11 Two-layered machines.
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X2

X1

FIGURE 3.12 Geometrical interpretation of a simple two-class classification problem by
a layered machine.

TABLE 3.1 Values of w{, x, w] x, and w] x in Different Regions of the Pattern Space

Subregion
wl'x A B C D E F G
wlx ] 1 1 0 1 0 0 0
wix 1 0 1 ] 1 0 0
wix 1 1 0 1 0 1 0
= ) w, W, ON My Wy W, —

I’s and 0’s denoting greater than and less than zero, respectively. No regions
lie on the negative side of all these three hyperplanes, so (0, 0, 0) can never
occur.

Four other threshold functions as shown in Figure 3.13 are also used in the
processing elements. These threshold functions are: (a) the linear threshold
function, (b) the ramp threshold function; (c) the step threshold function; and
(d) the sigmoid threshold function. Note that all except (a) are nonlinear
functions.

For a commitiece machine with five discriminant functions (or TLU
units), only 15 subregions are available for classification (see Figure 3.14 and
Table 3.2).
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(a) (b)

—

(c) (d)

FIGURE 3243 Four common threshold functions used in processing elements. (a) linear
function; (b) ramp function; (c) step function; and (d) sigmoid function.

34 NONLINEAR DISCRIMINANT FUNCTIONS

The linear discriminant function is the simplest discriminant function. But in
many cases the nonlinear discriminant function should be used. Quadratic
discriminant functions have the following form:

n—1

dix) =Y. w,.jx} + 3 kz WaXiXy, + D WiX; + W, (3.31)
J=1 j=1

f== =j+l j=]

The first set of weights on the right-hand side of Eq. (3.31), wy;, j=1,2,...,n,
consists of n weights; the second set, Wiy J = 1,2,....,.n—1,k=2,3,...,n,
consists of n(n — 1)/2 weights; the third set, w;, j =1, 2,....n,n weights; and
the last set, w,,, only one weight. Hence, the total number of weights on d(x) is
(n 4+ 1)(n + 2)/2. When expression (3.31) is put in matrix form,

dx) =x"Ax+x'B+C (3.32)
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Five discriminant functions

FIGURE 3.14 Geometrical interpretation of a simple two-class classification problem
with five TLUs.
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TABLE 3.2 Values of w/x, wlx,...,wlx in Different Regions of the Pattern Space

Subregion
wix A B C¢C D E F G H I J K L M N O
wix o o o ¢ o0 o0 ¢+ 1 1 + 1t 1 v 1 |
wlx o o o 1 1 o o 1 1 1 0o 1 1 I 1
wx 1 0 ¢ 1 o0 O o t o0 o0 o t 0o 0 1
wix t 1 06 1 1 o o0 1 1 o0 0 1 1 0 0
wix 11 1 t 1t o 1 't L t 0 0 0 0 0
XE€ W, Wy Wy Wy W Wy My W Wy W 0y W W My
where
W” W|2 N W]n
Wi W ... Wp
A=
Wpl Wn Wnin
Wy
W)
B = 3 C“_'Wn+l
WH

Note that if all the eigenvalues A of A are positive, the quadratic form x” Ax will
never be negative, and

xAx=0 iffx=0 (3.33)

That means that matrix A is positive definite and the quadratic form is also
positive definite. But if one or more eigenvalues (4’s) equal zero while the others
are positive, matrix A and the quadratic x” Ax are positive semidefinite.

Remember that on the decision surface, d,(x) = af,-(x). In other words, the
decision surface is defined by d.(x) — di(x) = 0. For the quadratic case, the
quadratic decision surface is given by an equation of the form

Varieties of the quadratic surfaces can be defined for different values of 4, which
is equal to A, — A,

If A is positive definitive, the decision surface is a hyperellipsoid with axes
in the direction of the eigenvectors of A. If A = al, an identity matrix, the
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decision surface is a hypersphere. If A is positive semidefinite, the decision
surface 1s a hyperellipsoidal cylinder whose cross sections are lower-dimensional
hyperellipsoidals with axes in the direction of eigenvectors of A of nonzero
eigenvectors. Otherwise (i.e., when none of the conditions above is fulfilled by A
or A is negative definite), the decision surface is a hyperhyperboloid.

A quadratic discriminant function is much more complicated than a linear
function. How to implement such a complicated function? Let us use a ¢ machine
to treat this quadratic function as a linear problem.

35 ¢ MACHINES

3.5.1 Formulation

¢ machines are a kind of classification system in which ¢ functions are used for
pattern classification. The ¢ function (or generalized decision function) is a
discriminant function that can be written in the form

d(x) = ¢(x) = wy f1(X) + wy f(X) + - -+ wy i (X) + wyp (3.35)

where the f;(x), i = 1,2, ..., M, are linearly independent, real, and single-valued
functions which are independent of the w; (weights).

Note that ¢(x) is linear with respect to w;, but the f;(x) are not necessarily
assumed to be linear. There are M + 1 degrees of freedom in this system. The
same nonlinear discriminant function problem as used in Section 3.4 is taken for
illustration.

n n—l n n
dx) =Y wjjsz + 20 WX+ 2w+ w,y
J=1 7=l k=j+1 Jj=1

= w1 + WyaX5 - WX Ty X3
+ o Wy p XX, T WX WXy
+ W, +w, (3.36)

A schematic diagram of the ¢ machine for this problem is shown in Figure 3.15.
The F block is a quadratic processor and F = (f{, f3. /3. -...fiy)- The first n
component of F are x3, x2, ..., x2; the next n(n — 1)/2 components are all the
pairs x;x,, x;X3,...,X,_1X,; and the last n components are xy, x5, ..., x,. The
total number of the components is M = n(n + 3)/2. We have then transformed
from an n-dimensional pattern space to an M-dimensional ¢ space. A nonlinear
problem is then put in a linear form.
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6

FIGURE 3.16 Linear dichotomization of four patterns.

3.5.2 Capacity of ¢ Machines for Classifying
Patterns

Let us compute the number of dichotomies that can be obtained from N patterns.
Assume that M = 2 and there are N n-dimensional patterns. Since each pattern
may fall either in ®, or w,, there are 2% distinct ways in which these N patterns
could be dichotomized. For N =3, we will have eight dichotomies, and for
N =4 we have 16 dichotomies. The total number of dichotomies that a linear
discriminant function (¢ space) can affect is dependent only on # and N, not on
how the patterns lie in the pattern space in the form of the ¢ function.

Let D(N, n) be the number of dichotomies that can be affected by a linear
machine (linear dichotomies) on N patterns in n-dimensional space. In the four-
pattern example given in Figure 3.16, /, dichotomizes x, from X, X3, and x4; /s
dichotomizes x; and x, from x; and x,; /; dichotomizes x, from x,, x,, and x;; /5
dichotomizes x, and x; from x, and x,; and /, dichotomizes x, from x, x;, and
x,. That is, in the problem we have here, N = 4 and n = 2, we have seven linear
dichotomies. Each of them can divide the patterns in either one of two ways, such
as in the dichotomy by /;:

X,Xy €W X7, X4 € (0
or
xl,X3 € Wy XQ,X4,€(£)1

The number of linear dichotomies of N points in #-dimensional Euclidean space
is equal to twice the number of ways in which the points can be partitioned by an
(n — 1)-dimensional hyperplane; so

D@4,2)=2-7=14
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Comparing the total number of dichotomoties, 2¥ = 16, we find that two of these
are not linearly implementable. It is not difficult to see that x; and x4 cannot be
linearly separated from x, and x;.

In general, for a set of N points in an n-dimensional space with the
assumption that no subsets of (n + 1) points lie on an (» — 1)-dimensional plane,
we can use the recursion relation

DN, n)=D(N = 1,n)+DWN —1,n—1) (3.37)

to solve for D(N, n). In particular,

D(l.n) =2 and D(N,1)=2N (3.38)
Then
D(N.n) = 2/§)(N;l) Nzntd (3.39)
2N N<n+1l
where
(N —-1)

N—ly
e )Wk!(N—l—k)!

Now, let us generalize this problem by finding the probability of the dichotomy
that can be implemented. Given a ¢» machine and a set of N patterns in the pattern
space, there are 2 possible dichotomies and any one of the 2V dichotomies can
be picked up with probability

p=27"
For the generalized decision function

d(x) = ¢(x) = w1 fi(X) + wp fo(X) + -+ - + Wy iy (X) + Wiy (3.40)
the probability py s that any one dichotomy can be implemented is

_ number of ¢ dichotomies
" total possible number of dichotomies

D(N, M)
=T

Pyv.m
(3.41)

M
25 (V! N>M+1
Py =27" k:()( o) (3.42)

2N N<M+1
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or

M
2'—”;)(3";1) N>M+1
1 N<M+1

Pnm = (3.43)

Note that py »y = | for N < M + 1, which means that if the number of patterns is
less than the number of weights available for adjustment for the generalized
decision function, the patterns will always be linearly separable in the M-
dimensional pattern space. But when N > M + 1, the probability of dichotomi-
zation will go down depending on the ratio of N to M + 1. Figure 3.17 gives a
plot which shows the relation of p,, ,, with A, where 4 is the ratio of N to M + 1.
Note that curves with various values of M intersect at a point py 3, = 0.5 when
A =12. For large values of M, we almost have the ability to totally classify
N = 2(M + 1) well-distributed patterns with the generalized decision function of
M + 1 parameters. On the contrary, if N is greater than 2(M + 1), the probability
in achieving a dichotomy, py ,s, declines sharply for similar values of M.
Therefore, the dichotomization capacity C of the generalized decision functions
equals 2(M + 1).

Although the analysis does not tell us how to choose d(x) or ¢(x), it does
tell us something about the ability of the machine to dichotomize patterns.
Suppose we have a total of N patterns that properly represent two classes, we are
almost sure that we could find a good classifier if M is large. For example, for a

A M = oo
1.0 /

| M=25

PyM

0O5F--------1--------

N<M+1

1 2 3

FIGURE 3.17 A py j versus 4 plot.
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two-class three-dimensional pattern classification problem with a quadratic
discriminant function d(x), we have

n(n+3)
— =
Then, the capacity of dichotomization

C=2M+1)=20

M= 9

If N <20, we have a pretty good choice! This example also tells us how many
prototypes we need for a good training set without causing endlessly forward and
backward adjustment of the weights.

3.6 POTENTIAL FUNCTIONS AS DISCRIMINANT
FUNCTIONS

A potential function W(x, z}') is known as a kernel in the probability density
function estimator, or is a function of x and z]' defined over the pattern space,
where 2] is the mth prototype defining class w,. The potential function is better
illustrated by Figure 3.18 for a one-dimensional pattern space. This potential
gives the decreasing relationship between point zj' and point x as the distance
d(x, z;') between these two points increases.

Superposition of the individual kernel “potential” functions will be used as
a discriminant function

N
> bx. 2y

di(x) = =‘—M—— (3.44)

wix,z})

FIGURE 3.18 Potential function of one variable.
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which is defined for class k, where N, is the number of prototypes in class k.
Functions iy may be different between classes or even between prototypes within
a class. The average of these potentials of prototypes from a given class indicates
a degree of membership of the point x in the class.

The following characteristics of s are desirable:

1. y¥Ax, z) should be maximum for x = z.
¥ (x, z) should be approximately zero for x distant from z in the region
of interest.

3. y(x, z) should be a smooth (continuous) function arid tend to decrease
in a monotonic fashion with the increase of the distance d(x, z).

4. If Y(x,, z) = Y(x,, z), patterns X, and x, should have approximately
the same degree of similarity to z.

If a set of potential functions are found which form a satisfactory
discriminant function as

di(x) > di(x) when x € o, Vj, k (3.45)
then

FX) +di(x) > f(x) +di(x)  Vf(x) (3.46)
and

f®dx) > fx)d(x)  Y(x)>0 (3.47)

This will help to simplify the computation of ¥ and ultimately the computation of
d(x). Since, for example, if

¥, (x,z) = exp[—(x — ) (x — 2)]
= exp[—|x|* — 1z)? + 2x72) (3.48)
after multiplying ¥, (x, ) by f(x) = exp [x|>, we obtain

¥, =f(x)¥(x, 2)
= exp[2x’z — |z/%] (3.49)

which will be much simpler than that of ¥, (x, z).
Another form of potential function can also be chosen for sample pattern z:

V(. 2) = 3 26,06, (3.50)
1=1

where A, i=1,2,..., are constants and ¢, i=1,2,..
functions, such that

., are orthonormal

S (0 (2) = 6(x ~ 2) (3.51)
i=l1
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If [¢,] is a complete orthonormal set, then for the decision function d;,

l N
dy(x) = F > ¥(x.2)
k m=1

= X T B b

km=11=

=Y om(y) T Ao

= § Cl i(x) (3.52)

where

r'
NA m=1

This procedure is most attractive when either the number of samples N, is small
or the dimensionality of x is sufficiently small to allow d(x) to be stored as a table
for discrete values of x. But if the number of samples 1s large, computation
problems will be severe and storage problems may occur.

PROBLEMS

3.1 Let Y=y, ¥5,...,¥uy] be the set of all sample points. Find the
normalized variables. Note: In the derivation of the expression for the
normalized variables, N classes and M, samples for the class N are
assumed.

3.2 Discuss whether it would be successful for us to apply the method of
successive dichotomies to the problem described by Figure P3.2.

quadratic decision
boundary

FIGURE P3.2
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3.3 You are given the following prototypes in augmented space:

[(6.4.1),(5,2,1),(1,3, 1), (0, =5, )] € S

34

(5, -1, D), 4 -1, 1).3,1.1)] €S,

You are also informed that a layered machine (three TLUs in the first
layer and one TLU in the second layer) might be a useful tool in

dichotomizing the prototypes properly. Suppose that the following
weight vectors have been selected for the first-layer TLU:

xTw, ——_-F-
x'w; J._‘_ Z ' ‘J“ —

FIGURE P3.3

W,
W,
W;

(a)
(b)

(c)
(d)

=-1,1,4

=1,1 -1

=-110

Compute and plot the prototypes in the first layer space.

Will a committee machine separate these prototypes with the
TLUs, as shown in Figure P3.3

Which prototype must be removed for the first-layer space to be
linearly separable?

What happens to the committee machine when the weight
vectors are changed to the following?

W, =-1-1,4

W, =1 -1,-1

W3 = — % . _1 B O

The following three decision functions are given for a three-class
problem:

dy(x) =10x, —x, =10 =90
dz(X) =X + 2x2 —10=90
d(x) =x, —2x,—10=90
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3.5

3.6

3.7

(a) Sketch the decision boundary and regions for each pattern class,
assuming that each pattern class is separable from all other
classes by a single decision surface.

(b) Assuming that each pattern class is pairwise separable from
every other class by a distinct decision surface, and letting
dy(x) = d\(x), d3(x) =dy(x), and dy;(x) = d3(x) as listed
above, sketch the decision boundary and regions for each
pattern class.

(a) Prove that curves in Figure 3.17 with various values of M (M
varies from 1 to very large values) will intersect at a point when
A=12.

(b) Find the proper number of prototypes for a training set without
causing endlessly forward and backward adjustment of the
weights (synapses).

Interpret geometrically a simple two-class classification problem by a

layered machine with five discriminant functions.

Find the number of dichotomies for the five patterns shown in Figure
P3.7.

Feature 2 X2
A
X)
A
X4
A
X3
A
Xs
A
—>
Feature 1

FIGURE P3.7
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Nonparametric (Distribution-Free)
Training of Discriminant Functions

4.1 WEIGHT SPACE

We have already discussed the fact that a pattern vector X appears as a point in the
pattern space, and that a pattern space can be partitioned into subregions for
patterns belonging to different categories. The decision surfaces that partition the
space may be linear, piecewise linear, or nonlinear, and can be generalized as

d(x) = f(w, x) 4.1)
where d(-) is called the discriminant function, and
X ={x;,x5,...,X,, ! and w=(w1,w2,...,w,,,w,,H)T

represent the augmented pattern and weight vectors, respectively. The problem of
training a system is actually to find the weight vector w shown in Eq. (4.1) with
the a priori information obtained from the training samples. It is possible and
perhaps much more convenient to investigate the behavior of the training
algorithms in a weight space. The weight space is an (n + 1)-dimensional
euclidean space in which the coordinate variables are w|, w,, ....w,, w,,. For

n

each prototype z}, k=1,2,.... M, m=1,2,... Ny (where M represents the
62
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number of categories and N, represents the number of prototypes belonging to
category k), there is in W space (weight space) a hyperplane on which

wiz! =0 (4.2)

Any weight vector w on the positive side of the hyperplane yields wlz > 0. That
is, if the prototype zJ' belongs to category w, any weight vector w on this side of
the hyperplane will probably correctly classify 2} as in w;. A similar argument
can be made for any weight vector on the other side of this hyperplane, where
wiz < 0.

Let us take a two-class problem for illustration. Suppose that we have a set
of N, patterns belonging to w, and a set of N, patterns belonging to w,, with the
total number of patterns N = N, + N,. Assume also that w, and w, are two

linearly separable classes. Then a vector w can be found such that

wizZl' >0 Vil ew,, m=12....N 4.3)
and

Wil <0 Ve w,, m=12,...,N, (4.4)

where z' and z)' represent all the prototypes in categories w, and w,,
respectively. In general, for N patterns there are N pattern hyperplanes in the
weight space. The solution region for category w, in W space is that region which
lies on the positive side of the N, hyperplanes for category @, and on the negative
side of the N, hyperplanes for category w,.

Suppose that we have three prototypes z!. 2%, and z3, and know that all of
them belong to category w,. Three hyperplanes can then be drawn in the W
space, as shown in Figure. 4.1a. The shaded area in Figure 4.1a shows the
solution region in this two-class problem. In this region

d(w,z) >0

d,{(w,z) > 0
and

dy(w,z) > 0

That is, any w in this region will probably classify the prototypes z!, z{, and z] as
belonging to category w;, while in the cross-hatched area shown in Figure 4.1b,

di(w,z) >0

dy(w,z2) >0
but

diy(w,z) <0
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~ + solution
region

(a)

d,>0
d,>0
dy<0

(b)

FIGURE 4.1 Hyperplanes in W space. 1 indicates the positive half-plane of the
hyperplane.
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Any w over this region will classify z] and z? as being in category w,, but classify
z3 as being in category w,.

As discussed in Chapter 3, the decision surface for a two-class problem is
assumed to have the property that d(w, x) will be greater than zero for all patterns
of one class, but less than zero for all patterns belonging to the other class. But if
all the z7'’s are replaced by their negatives, —z"s, the solution region can be
generalized as that part of the W space for which

wz>0 Vz=2 -2y (4.5)

Our problem then simply becomes to find a w such that all inequalities are greater

than zero.

It might be desirable to have a margin (or threshold) in the discriminant
function such that

wz>T Vz =12 -2, (4.6)

where T > 0 is the margin (or threshold) chosen. Any w satisfying inequality (4.6) is
a weight solution vector. The solution region is now changed as shown in Figure 4.2.

rA
4 vy
Wy AN ,(l
2 (N
+ 2
&, &/
O»e @& <
N ¥ T~ 1=
4 ‘QQ A_\?J wT'L\ 1=0
Eb + W
T
\7
- \r\"]
+ \
0('1'\
np
+ +

FIGURE 4.2 Solution region for a two-class problem with margin set for each decision
surface.
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In the cross-hatched region, both w”z] and w”z? are positive, while w7z, < 0.
Note that along the original pattern hyperplane

wiz=0 4.7)

and that the vector z (augmented z) is perpendicular to the hyperplane w’z = 0
and heads in its positive direction. Thus the line w/z = T is offset from w/z = 0
by a distance A = T/|z|. The proof of this is left to the reader as a problem.

4.2 ERROR CORRECTION TRAINING
PROCEDURES

It is obvious that for a two-class problem an error would exist if

wizl > O(T) (4.9)

Then we need to move the weight vector w to the positive side of the pattern
hyperplane for z”, in other words, move the vector w to the correct solution
region.

The most direct way of doing this is to move w in a direction perpendicular
to the hyperplane (i.e., in a direction of z[' or —z7'). In general, the correction of
the w can be formulated as: Replace w(k) by w{k + 1) such that

wik+ 1) =wk) + ezt if w (! < O(T)
wik + 1) = w(k) — cz¥ if w/(k)zy > 0(=T) (4.10)
wk + 1) = wik) if correctly classified

where w(k) and w(k + 1) are the weight vectors at the kth and (k 4+ 1)th
correction steps, respectively. To add a correction term cz]' implies moving
vector w in the direction of z{'. Similarly, subtracting a correction term ¢z
implies moving vector w in the direction of —z5'.

During this training period, patterns are presented one at a time through all
N = N, + N, prototypes (training patterns). Each complete pass through all the N
patterns is called an iteration. After one iteration, all patterns are presented again
in the same sequence to carry on another iteration. This is repeated until no
corrections are made through one complete iteration.

Several rules can be set up in choosing the value of ¢: the fixed increment
rule, absolute correction rule, fractional correction rule, and so on.
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4.2.1 Fixed-Increment Rule

In this algorithm, ¢ is chosen to be a positive fixed constant. This algorithm
begms w1th any wISO) and Eq. (4.10) is applied to the training sequence P, where
=[zl,2,....2 ,12 ?]. The whole weight-adjustment process will terminate in
some finite steps k.
The choise of ¢ for this process is actually not important. If the theorem
holds for ¢ = 1, it holds for any ¢ # 1, since this, in effect, just scales all patterns
by some amount without changing their separability.

4.2.2 Absolute Correction Rule

In this algorithm ¢ is chosen to be the smallest integer that will make w(k + 1)
cross the pattern hyperplane into the solution region of W space each time a
classification error is made. Let z be the average of the sample vectors that do not
satisfy the inequality w’ -z > T. The constant ¢ is chosen such that

Wik + 1)z = [wk) +cz)'Z, > T (4.11)
or

ez, > T —wi(k)z, > 0 (4.12)
and therefore

T =Wk _T—w(kpe

’ -
'z |22

(4.13)

Note that if 7 = 0, —w7(k)z; must be greater than zero, or w’(k)z, < 0. Taking
its absolute value into consideration, Eq. (4.13) becomes

T 7
>E%%ﬂ (4.14)

The absolute correction rule will also yield a solution weight vector in a finite
number of steps.
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4.2.3 Fractional Correction Rule

In W space, the augmented pattern vector z is perpendicular to the hyperplane
w’z = 0 and heads in the positive direction, as shown in Figure 4.3. The distance
from w(k) to the desired hyperplane is

T Z

D=A+d=—+|wk) - —

\Zil \Z;|

T i
= L v oz (4.15)
|z;)| 1z
When w(k) 1s on the other side on the hyperplane,

D= T ||‘le(k)z:| (4.16)

In the fractional correction algorithm ¢ is chosen so that w is moved by a fraction
of the distance in a direction normal to the desired hyperplane. That is,

c=ﬂ_—1—)/— i>0 4.17)
IZ,-
and
z§
w(k + 1)_w(k)=)'Di—z’—l (4.18)
WH

FIGURE 4.3 Augmented pattern vector in W space.
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If the threshold is set at 0, then

T
c :zw, A0
|z}
(4.19)
p_ T
|zi|

It can be seen that when A = 1, the correction is to the hyperplane (absolute
correction rule); when A < 1, the correction is short of the hyperplane (under-
relaxation); and when A > 1, the correction is over the hyperplane (overrelaxa-
tion). For 0 < A < 2, the fractional correction rule will either terminate on a
solution weight vector in a finite number of steps or else converge to a point on
the boundary of the solution weight space.

The training procedure can then be generalized for any of the foregoing
three algorithms as follows:

1. Take each z from the training set and test d(z) for its category
belonging. M = 2 is assumed here.

2. If a correct answer is obtained, go to the next z.

If misclassification occurs, correct w(k) with w(k + 1).

4. After all z’s from the training set have been examined, repeat the entire
process in the same (or different) sequential order. If the z’s are linearly
separable, all three of these algorithms will converge to a correct w.

(8]

Figure 4.4 shows an example of training a two-category classification problem
with two sets of prototypes, namely,

2.7 € o
and
5.7 € W,

Absolute correction rule is used in this example. Hyperplanes for the prototypes
z}, 73, z), 25 can be drawn on the two-dimensional W space, when these four
prototype vectors z',i = 1,2,m = 1,2 are given. The initial weight vector W
was chosen randomly. Assume that it was chosen at position a on Figure 4.4.
When z| is presented to the system, d(z}) should be greater than zero; i.e., the W
vector should be on the positive side of z} hyperplane. But it is not with the
present position of the weight vector, and therefore the weight vector W should be
adjusted to position 5. At this time when 2} is presented to the system, this weight
vector W now lies on the positive side of the z} hyperplanes. This is also not
correct (see the figure), so the W vector should again be adjusted to a right
position ¢ relative to the said hyperplane.
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FIGURE 4.4 Training of the two-category classification system with prototypes.

Let us repeatedly present the prototypes to the system in a random order as
shown in Table 4.1, and the weight vector is adjusted accordingly. Table 4.1 and
Figure 4.4 show the sequence of the weight adjustments. The weight vector W
eventually stops at the solution region where no more adjustment is needed
whenever and in any order a prototype is presented to the system. The system is
then said trained.

Figure 4.5 shows the correction steps for the above three different
procedures. Absolute correction terminates in three steps, whereas fractional
correction terminates in four steps.

TABLE 4.1 Adjustment of the Weight Vector During the Training Period

Oldunfpmmmﬁo:_
1 2 3 4 5 67T 58 210111213 1141516

Prototypes 2 TR EEEEEEEEEEEE
d(z") =W'z] evalustedonthe — + — + + — — = + 4+ + = + - + -
:;n.hypc.-g!m

d(z*) = W' z" should be d = = = = - F -+ - 4 -
W adjustment needed YYYYNNYNNYNNNNNN
W moves to position b e d ¢e e ¢e f I I g2 2 8 £ 8 8 ¢
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solution dy>0
region d2>0
Z> 0

FIGURE 4.5 Weight vector adjustment procedures. @, Fixed increment; A, absolute
correction; +, fractional correction.

For classes greater than 2 (A > 2), similar procedures can be followed.
Assume that we have training sets available for all pattern classes w;,i=
1,2,...,M. Compute the discriminant function d,(z) = wlz,i=1,2,..., M.
Obviously, we desire

d{z) > d|(z) ifzew,Vi#£i (4.20)
If so, the weight vectors are not adjusted. But if

d(z) > d(z) ifzew,Vj#i 4.21)
misclassification occurs, and weight adjustment will be needed. Under these

circumstances the following adjustment can be made for the fixed-increment
correction rule:

wik + 1) = w(k) + cz (4.22)
wi(k+1) = w(k) — cz (4.23)
w(k + 1) = w(k) (4.24)

where k and & + 1 denote the kth and (k + 1)th iteration steps. Equation (4.23) is
for those z;s that make d,(z) > d,(z), and Eq. (4.24) is for those z;’s that are
neither / nor those making an incorrect classification. If the classes are separable,
this algorithm will converge in a finite number of iterations. Similar adjustments
can be derived for the absolute and fractional correction algorithms.
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4.3 GRADIENT TECHNIQUES
4.3.1 General Gradient Descent Technique

The gradient descent technique is another approach to train the system. A
gradient vector possesses the important property of pointing in the direction of
the maximum rate of increase of the function when the argument increases. The
weight-adjustment procedure can then be formulated as

w(k + 1) = w(k) ~ 0, VI (W yw=wi) (4.25)

where J(w) is an index of performance or a criterion function that is to be
minimized by adjusting w. Minimum J(w) can be approached by moving w in the
direction of the negative of the gradient. The procedure can be summarized as
follows:

1. Start with some arbitrarily chosen weight vector w(1) and compute the
gradient vector VJIw(1)].

2. Obtain the next value w(2) by moving some distance from w(l) in the
direction of steepest descent.

p, in Eq. (4.25) is a positive scale factor that sets the step size. For its
optimum choice, let us assume that J(w) can be approximated by

JIw(k + 1)) = Jw(k)] + [wik + 1) — w(k))" VJIiw(k)]

(4.26)
+ 1wk + 1) — w(k)]) DIw(k + 1) — w(k)]
where
*J

D=5, Lt
Substitution of Eq. (4.25) into Eq. (4.26) yields

J[w(k + )] = JIw(k)] — p, IVI[wW(1? + 1 pEVJT DVJ (4.27)
Setting 3J[w(k + 1)]/dp; = 0 for minimum J{w(k + 1)}, we obtain

\VJ? = p,VJTDVJ (4.28)
or

VI (4.29)

PESITDVT |yt
which is equivalent to Newton’s algorithm for optimum descent, in which

pp =D (4.30)



Nonparametric Training of Discriminant Functions 73

Some problems may exist with this optimum p,: D~! in Eq. (4.29) may not exist;
the matrix operations involved are time consuming and expensive; and the
assumption of the second-order surface may be incorrect. For those reasons,
setting g, equal to a constant may do just as well.

4.3.2 Perceptron Criterion Function

Let the criterion function be

W)=Y (—w'z) (4.31)
zeP
where the summation is over the incorrectly classified pattern samples. Geo-
metrically, J,(w) is proportional to the sum of the distances of the misclassified
patterns to the hyperplane. Taking the derivative of J,(w) with respect to w(k)
yields

Vi wik)] = >z (4.32)

zeP

where w(k) denotes the value of w at the kth iteration step. The perceptron
training algorithm can then be formulated as

wik + 1) = w(k) — p,VJ,[w(k)] (4.33)
or
wk+ D =wk)+p Y z (4.34)
zcP

where P is the set of samples misclassified by w(k). Equation (4.34) can be thus
interpreted to mean that the (k + 1)th weight vector can be obtained by adding
some multiple of the sum of the misclassified samples to the kth weight vector.
This is a “many-at-a-time” procedure, since we determine w’z for all z and
adjust only after all patterns were classified.

If we make an adjustment after each incorrectly classified pattern (we call it
“one-at-a-time” procedure), the criterion function becomes

J(w) = —wlz (4.35)
and

VJ(w) = —2 (4.36)
The training algorithm is to make

wk + 1) =wk) + pz (4.37)

This is the fixed-increment rule if p, = ¢ (a constant).
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4.3.3 Relaxation Criterion Function
The criterion function used in this algorithm is chosen to be

(—w'z + b)°

Jw) =1y - (4.38)

zeP |Z|
Again, P is the set of samples misclassified by w. That is, P consists of those z’s

for which —w’z + b > 0 or w’z < b. The gradient of J,(w) with respect to w(k)
yields

—wliz+b
— 2

VW) =% : (4.39)

ZEP |z

The basic relaxation training algorithm is then formulated as

_wT
w(k + 1) :w(k)+pk2—w—@£ifz

(4.40)
zefP ,1'2

This is also a many-at-a-time algorithm. Its corresponding one-at-a-time algo-
rithm is
—wl(k)z+b .

wk + 1) = w(k) + p, 2

(4.41)

which becomes the fractional correction algorithm with 4 = p,.

44 TRAINING PROCEDURES FOR THE
COMMITTEE MACHINE

In general, no convergence theorems exist for the training procedures of
committee (or other piecewise linear) machines., One procedure that frequently
is satisfactory is given here. Assume that M = 2 and that there are R discriminant
functions, where R is odd. Then

dzy=w/(k)z i=1,2,...,R (4.42)
The classification of the committee machines will then be made according to
R
d(z) = sgndfz) (4.43)
=1
such that

7 is assigned to @, when d(z) > 0

Z is assigned to w, when d(z) < 0 (4.44)
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where

+1 if diz)> 0

sgndi(z) =1 _ | ir d(z) <0

(4.45)

Note that since R is odd, d(z) cannot be zero and will also be odd. Thus d(z) is
equal to the difference between the number of d,(z) > 0 and that of d(z) < 0 fora
weight vector w;(k) at the kth iteration step. In this regard, we always desire
d(z) > 0. In other words, we want to have more weight vectors that yield
d{z) > 0 than those which yield d,(z) < 0.

When d(z) < 0, incorrect classification results. It will be obvious that in
this case there will be [R + d(z)]/2 weight vectors among the w(k),i=1,... R,
which yield negative responses [d;(z) < 0] and [R — d(z)]/2 weight vectors which
yield positive responses [d,(z) > 0]. To obtain correct classification, we then need
to change at least n responses of the w;(k) from —1 to +1, where # can be found
by setting up the equation

[R —d@ n] _ [ﬁi@ - n] =1 (4.46)

2 2

The first set of brackets represents the number of d, that are presently greater than
zero, the set of brackets after the minus sign represents the number of d, that are
presently less than zero. The minimum value of » is then

Poan = d(Z)2+ 1 (447)

which is the minimum number of weight vectors needed to be adjusted. The
procedure for the weight vector adjustment will then be as follows:

1. Pick out the least negative d(z)’s among those negative d,(z)’s.
2. Adjust the [d(z) + 1]/2 weight vectors that have the least negative
d{(z)’s by the following rule:

wilk + 1) = w,(k) + cz (4.48)

so that their resulting d4,(z)’s become positive. All the other weight
vectors are left unaltered at this stage.
3. If at the Ath stage, the machine incorrectly classifies a pattern that

should belong to w,, give the correction increment ¢ a negative value,
such as

wik + 1) = w(k) = cz (4.49)
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4.5 PRACTICAL CONSIDERATIONS CONCERNING
ERROR CORRECTION TRAINING METHODS

Since error-correcting rules never allow an error in pattern classification without
adjusting the discriminant function, some oscillations may result. For example,
for the case of two normally distributed classes with overlap, an error will always
occur even if the optimum hyperplane is found. The error correction rule will
cause the hyperplane continually to be adjusted and never stabilize at the
optimum location,

For the case that classes have more than one “cluster” or *“grouping” in the
pattern space, the error correction training method will again encounter problems.
The remedy is to add a stopping rule. But this stopping rule must be employed
appropriately; otherwise, the system may terminate on a poor w. Another way of
solving such problems is to go to a training procedure that is not error correcting,
such as clustering (determining only the modes of a multimodal problem),
stochastic approximation, potential functions, or the minimum squared error
procedure.

4.6 MINIMUM-SQUARED-ERROR PROCEDURES

4.6.1 Minimum Squared Error and the
Pseudoinverse Method

Consider that we wish to have the equalities
Zw =D (4.50)

instead of the inequalities zw > 0. Then we are required to solve N = }:f; N;
linear equations, where N is the total number of prototypes for all classes, N, is
that for class w;, and M is the total number of classes. z and b can then be defined,
respectively, as

Z; %212 7 e
7 — z.:,_ _ 21 2 2 (4.51)
z, Iyt Zw2 Tt Zwm
and
by
b=| (4.52)
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If Z were square and nonsingular, we could set
w=Z"b (4.53)

and solve for w. But, in general, Z is rectagnular (i.e., more rows than columns)
and many solutions to Zw = b exist. Let us define an error vector as

e=Zw—b (4.54)
and a sum-of-squared-error criterion function as
N o
Jwy=1lel* =1|Zw—b|* =1} (zw - b))’ (4.55)
1=1
Taking the partial derivative of J, with respect to w, we obtain

VW) = 3 @w - b, (4.56)
=1

or in matrix form,

VJ,(w) = ZT(Zw — b) (4.57)
To obtain minimum square error, set VJ(w) = 0. We then have

Z’wZ=17"b (4.58)
or

w=Z"b (4.59)

where Z* = (Z7Z)™'Z7 is called the pseudoinverse or generalized inverse of Z.
Z7 has the following properties: (1) Z*Z = I, but in general, ZZ" % I; and (2)
Z7 = 77" if Z is square and nonsingular. The value of b in Eq. (4.52) may be set
arbitrarily except that b, > 0,Vi. If no other information is available, a good
choice is

b=t 1 I - 1]=u’

In fact, if b = u’, the minimum-squared-error solution approaches a minimum-
mean-squared-error approximation to the Bayes discriminant function. Note that
this method is not error correcting, since it does not compute new w for every z
In fact, all z are considered together and only one solution is needed; therefore,
the training time is very short.

4.6.2 Ho-Kashyap Method

When the criterion function J(w)) is to be minimum not only with respect to w,
but also with respect to b (i.e., assume that b is not a constant), the training
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algorithm is known as the Ho-Kashyap method. The same criterion function J as
that shown in Eq. (4.55) is to be used and repeated here:

J(w) =4 |Zw — b]? (4.60)
Partial derivatives of J(w) with respect to w and b are, respectively,
aJ(w) r
——=Z'(Zw—Db 4.61
S~ =Z7(Zw —b) (4.61)
and
aJ(w)
—~=—(Zw-bDb 4.62
o (Zw —b) (4.62)

Setting aJ /dw = 0 yields
w=(Z"Z)"'Z"b = Z"b (4.63)

Since all components of b are constrained to be positive, adjustments on b can be
made such that

b{k + 1) = b(k) + ob(k) (4.64)
where
| 2c[e(i)] where e(k) > 0
0bi(k) = [ 0 when e(k) < 0 (4.65)

where k. i, and ¢ represent the iteration index, the component index of the vector,
and the positive correction increment, respectively. From Eq. (4.63) we have

wlk + 1) = Z'b(k + 1) (4.66)
Combining Egs. (4.63), (4.64), and (4.66), we obtain

w(k + 1) = w(k) + Z*b(k) (4.67)
Remembering that the components of b = (5, b,. ..., bN)T are all positive, that
18,

w(l) = Z*b(1) b(1) > 0 (4.68)

e(k) = Zw(k) — b(k) (4.69)

the algorithm for the weight and b adjustments can be put in the following form:
wik + 1) = wk) + cZ*[e(k) + le(k)]] (4.70)
b(k + 1) = b(k) + cle(k) + |e(k)]] (4.71)
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4.6.3 Widrow-Hoff Rule

If either Z7 Z is singular or the matrix operations in finding Z* are unwieldy, we
can minimize J(w) by a gradient descent procedure:

Step 1. Choose w(0) arbitrarily.
Step 2. Adjust the weight vector such that

wk + 1) = wk) — p VI(W)lywity
or
wik + 1) = w(k) — p,Z7 [w(k)Z — b}

If p, is chosen to be p| /k, it can be shown that this converges to a limiting
weight vector w satisfying

VJ(w)=Z (WZ—b) =0

In this algorithm matrix operations are still required, but the storage requirements
are usually less here than with the Z* above.

PROBLEMS
4.1 Given the sample vectors
z; =(0,0)
2y = (2, 2)
4, =(4,0)
z; =(4,1)

where (z,,24,25] € w, and [z,,2,] € w,. If they are presented in
numerical order repeatedly, give the sequence of weight vectors and

the solution generated by using fixed increment correction rule. Start
with W7 (1) = 0.

4.2 Repeat Problem 4.1 with the following sample vectors:
z, =(0,0) € 0
ZZ = (3, 3) [ (1)2
Z; =(-3,3) € wy

Start with W, (1) = W,(1) = W5(1) = (0, 0, 0y
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43

44

4.5

4.6

4.7

Chapter 4

Given the following set of data:

z, =(0.0,0)"  z,=(1,0.0)7

z,=(1,0,1)7 2z, =(1,1,0) €,

z,=(0.0, 1)  z = 1,1

z;=0.1,0" =011 cw,
Find a solution weight vector using the perceptron algorithm. Start
with W(1) = (=1, =2, =2.0)".

It is much more convenient to train the classification system in the
weight space than in the pattern space. Why? Explain in detail.

To train a classification system, z], 22, z}, 73, and z} are used as the

prototypes for the training, where
21=02 4" =@ N eo
and
! T 2 _ T 3 _

(a) Draw the hyperplanes respectively for these training pattern
samples.

(b) If these pattern samples are presented to the system in the
following order:

zl, z.. 73, 7 and =

Show the weight vector adjustment procedure with the absolute
correction rule. Start with W7(1) = (6 0).
Write a program to find the decision surface for the following known
data:

=03 4. 2=02 6.2z,=0 5 z=03 5,

z, =(2 4) inclass o,
B=(-1 2),=(=2 2, 83=(-3 I)B=(-2 -1)
7z, =(-3 —3) inclass w,

To start, the w = (w, w, ws) can be selected as any values.

(a) Draw a three-dimensional diagram to show the solution region
of Problem 4.1.

(b) Draw a three-dimensional diagram showing the step-by-step
change of W for the following three cases:
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(1) Order of presentation: z}, z}, 2%, 23, z], and repeat until all
the prototypes are correctly classified.

(2) Order of presentation: 2}, 3, z}, 23, 23, and repeat until all
the prototypes are correctly classified.

(3) Order of presentation: Choose a random order of presenta-
tion by yourself.
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Statistical Discriminant Functions

In this chapter we discuss primarily statistical discriminant functions used to deal
with those sorts of classification in which pattern categories are known a priori to
be characterizable by a set of parameters. First, formulation of the classification
problem by means of statistical decision theory is introduced, and loss functions,
Bayes’ discriminant function, maximum likelihood decision, and so on, are
discussed. Some analysis of the probability error is given.

The optimal discriminant function for normally distributed patterns is then
discussed in more detail, followed by a discussion of how to determine the
probability density function when it is unknown. At the end of the chapter, a
large-data-set aerial-photo interpretation problem is taken as an example to link
the theory we have discussed with the real-world problem we actually have.

51 INTRODUCTION

The use of statistical discriminant functions for classification is advantageous
because (1) considerable knowledge already exists in areas such as statistical
communication, detection theory, decision theory, and so on, and this knowledge
is directly applicable to pattern recognition; and (2) statistical formulation is
particularly suitable for the pattern recognition problem, since many pattern
recognition processes are modeled statistically. In pattern recognition it is

82
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desirable to use all the a priori information available and the performance of the
system is also often evaluated statistically.

In the training of a statistical classification system, an underlying distribu-
tion density function such as gaussian distribution or some other distribution
function is assumed; however, no known distribution is assumed in nonparametric
training, as we discussed in Chapters 3 and 4.

5.2 PROBLEM FORMULATION BY MEANS OF
STATISTICAL DESIGN THEORY

5.2.1 Loss Function

Before we establish the loss functions, it will be helpful to make the following
assumptions;

1. p(w,) is known or can be estimated.
2. p(x|w;) is known or can be estimated directly from the training set.
3. p(w;|x) is generally not known.

Here p(w;) is the a priori probability of class w;, and p(x|w;) is the likelihood
function of class w;, or the state conditional probability density function of x.
More explicitly, it is the probability density function for x given that the state of
nature is w; and p(w;|x) is the probability that x comes from ;. This is actually
the a posterion probability.

A loss function L; may be defined as the loss, cost, or penalty due to
deciding that x € w; when, in fact, X € ;. Thus we seek to minimize the average

loss. Similarly, the conditional average loss or conditional average risk r;(x) may
be defined as

M
re(x) = ;L,-kp(wiIX) (5.1

that is, the average or expected loss of misclassifying x as in w;; but in fact, 1t
should be in some other classes @;,i=1,2,...,M and i # k.

The job of the classifier is then to find an optimal decision that will
minimize the average risk or cost. The decision rule will then consist of the
following steps:

1. Compute the expected losses, ri{x) of deciding that
xew Vi,i=1,2,....M.
2. Decide that x € w; If ri(x) < r(x). Vi,i#k.

The corresponding discriminant function is then

di(x) = —r(x) (5.2)
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The negative sign in front of r,(x) is chosen so as to make d,(x) represent the
most likely class. The smaller r,(x), the more likely it is that x € w,.
A loss matrix can then be set up as

0 1
L= K (5.3)
1 0
where L; =0,i=1,..., M, since no misclassifications occur in such cases;
while for Ly =1, there is a penalty in misclassifying x € w,, but actually
xew,i=1,....M,i#k This is a symmetric loss function since
Ly =1-8(k —i) (5.4)

where &k — i) 1s the Kronecker delta function and

)1 if k=i
ok — i) = { 0 otherwise (3.3)
If the value of L, is such that
The loss matrix becomes a negative loss function matrix:
Ch,
—h, 0 W
_h3
Lieg = . (5.7
0
! ~hy |

The significance of this negative loss function matrix is that a negative loss (i.e., a
positive gain) is assigned to a correct decision and no loss to an erroneous
decision. In other words, the loss assigned to a decision is greater for an
erroneous decision than for a correct one.

Note that the 4, in the matrix do not have to be equal. They may be different
to indicate the relative importance of guessing correctly on one class rather than
the other. Similarly, the L;; and L, in the loss matrix do not have to be equal.

For a two-class problem, L, = L,;, where i = 2, k = 1. This means that x
should be in w, but is misclassified as being in . L, = L, wheni=1,k =2,
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meaning that x should be in w, but is misclassified as being in w,. L; = 0 when
i = k. Thus we have

0 L
L[le 5'] (5.8)

Suppose that w, 1s the class of friendly aircraft and w, is the class of enemy
aircraft; then undoubtedly

Ly > Ly

since L, is just a false alarm, but L,; would mean disaster.

However, in another example, such as a fire sprinkling system in a
laboratory with expensive equipment, a false alarm should have a large L,
because when the sprinkler goes off and there is no fire, a lot of equipment
could be ruined. Thus we may end up with L,, = L,,, which is then a symmetric
loss function.

5.2.2 Bayes Discriminant Function

By Bayes’ rule, we can write

ple,|x) = p(x|w)p(w;) (5.9)
p(x)

where p(x) = 3, p(x|jw)p(w;), i = 1,2,..., M, is the probability that x occurs
without regard to the category in which it belongs. p(w,) is the a priori probability
of class w;, and p(x|w,) is the likelihood function of class w, with respect to x; it
is the probability density function for x given that the state of nature is w, (i.e., it
is a pattern belonging to class w;).

Substituting Eq. (5.9) into (5.1) for ri(x), we have

1 M
nl(x) = — 2 Lyp(x|w)p(w;) (5.10)
¢ p(X)gi & v

Since p(x) in Eq. (5.10) is common to all (x),/ = 1,..., M, we can eliminate it

from the conditional average risk equation and seek only the following minimum;
M

min;(x) = min ) Lyp(xie)p() (5.11)
=1

to obtain the best one among all the possible decisions, or alternatively, we can
Jjust say that

dy(x) = —rg(x) (5.12)
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which is the Bayes discriminant function. The classifier basing on this minimiza-

tion is called Bayes’ classifier, which gives the optimum performance from the
statistical point of view.

5.2.3 Maximum Likelihood Decision
As defined in Section 5.2.2, p(x|w,) is called the likelihood function of ;. The
expression for average or expected loss of deciding x € w, is

M
mur=§uwm@mma (5.13)

which can then be used for minimization to get the maximum likelihood for

x € ;. For a two-class problem, the average or expected loss of deciding x € w,
will be

r(x) = Ly p(xlo))p(w,) + Ly p(x|w; )p(w;) (5.14)
Similarly, the loss of deciding x € w, will be
F2(X) = Lpp(x|))p(w,) + Lopp(x|w;)p(w;,) (5.15)
In matrix form,
r=Lp (5.16)
or
ri| _ |Lu Lo || p(xloy)p(en) (5.17)
2 Ly, Ly || p(x|w;)p(w,)

The decision that x € @, will be made if

L p(xiw)p(@,) + Ly p(X|wy)p(,) < Lypp(xjw)p(@y) + Lyp(X|wa)p(w,)
(5.18)

or

(Ly; ~ Lyp)p(X|ey)plw;) < (Lyy — Lyp)p(xlw;)p(wy) (5.19)

The inequality above can be put in another form: that is, we assign x € o, if

p(x|lw) o (Lyy — Lyg)p(wy)
p(xlwy) Ly — Ly)p(wy)
Using the notation /;,(x) for p(x|w,)/p(x|w,) as the likelihood ratio and 0, for

(Ly) — Lo2)plw,)/(Lyy — Ly)plw,) as the threshold value, the criterion for the
decision becomes

(5.20)

x € w, if [;p(x) >0, (5.21)
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The derivation above can easily be generalized to a multiclass problem (i.e., when
M > 2). The generalized likelihood ratio and the generalized threshold value will
then become, respectively,

and
L, — L:)plw,
R Ty 62
Then the criterion for the decision can be stated:
Assign x € w; if I, > 04, Vi (5.24)

This is what we call the maximum likelihood rule. Basing on these mathematical
relations, it would not be difficult to implement it as a classifier.

Now let us consider the case that L is a symmetric loss function. The
problem becomes to assign x € @, if [;; > 0, Vi.i=1,..., M. The maximum
likelihood rule for this symmetric loss function becomes

pP(X)lwy) N plw;)
p(xlw)  plwy)

(5.25)

since Ly=1 and L;=0Vik and i#k i k=1..... M. If plw)=
p(w,) Vi, k, the maximum likelihood rule becomes:

Assign X € w, if [; > 1 (5.26)

Note that a different loss function yields a different maximum likelihood rule.

Now let us go back to the more general case that p(w,) # p(w,), and let us
formulate a discriminant function for the case of the symmetric loss function.
Since we have

_ p(x|wy) - p(w;)

f T pxlan)  ply) 27
then

p(xjw)p(w,) > plxio)plw,) (5.28)
In other words, we can assign x € w, if

pixloyp(ewy) > p(xlw)P(e) Vi (5.29)

Thus the discriminant function is now

di(x) = p(x|w;)p(wy) (5.30)
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An alternative form of this discriment function is
di(x) = log p(x|w;) + log p(ewy) (5.31)

Extending this to a more general case, the average loss of deciding that x € w, is
M
r(x) = 3 Lyp(xlw)p(e;) (5.32)
=1
or
r=L"p (5.33)
The maximum likelihood rule is then
X € w; if ri(x) < r;(x) (5.34)

or

M M
kzl Lap(x|og)p(oy) < Zqu,-p(Xlwq)p(wq) Vij#Fii=1....M
= q=

(5.35)
The summation of the terms on the left-hand side of (5.35) represent the average
loss of deciding x € w;, while that on the right-hand side represents the loss of
deciding that x € w;,j=1,.... M and j # i.
5.24 Binary Example

Let us take, for illustration, a binary example, in which each pattern x has
independent binary components as follows:

x=[x.%.....x] x,=lor0.i=12,...,n (5.36)
For a two-class problem (M = 2), the discriminant function d(x) is
d(x) = dy(x) — d,(x) (5.37)

where d(x) = log[ p(x]w)p(w,)] and d,(x) = log[ p(x|w,)p(w,)]. Then

p(xlw;) o p(wy)

dx)=lo (5.38)
=108 pixtn) T B ()
For a two-class problem, p(w,} + p(w,) = 1; hence
d(x) = log PEI2Y | o POV (5.39)

p(xloy) T BT = pla)
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Since the components x, are independent,
p(xiw)) = plx, |wj)p(x2le) o 'p(xn|wj) = I_[P(xi|wj) (5.40)
=1

and

u plx;|wy)

d(x) = Z log + log pl1)

plx;lw,) I = plw)

Since the pattern elements of x are binary for the problem we discussed here, for
simplicity we can let

(5.41)

plx, = ljw,) = p; (5.42)
Then

px, =0lw) =1—p; (5.43)
Similarly, let

px, = 1wy} = g; (5.44)
Then

plx;=0lwy) =1 —g; (5.45)

We can then claim that

pixiw) Di 1 -
og—+ (1 —x)lo
gP()C| 2) gq,‘ ( gl_

The validity of (5.46) can easily be checked by setting either x, = 1 or 0 in this
expression. Rewriting expression (5.46) gives

L V _ (5.46)

(1—gq 1 —p,
g = log P10 _ 1 p —a) log P (5.47)
plx; J(l))z q(1 —p;) I —g;
Substituting back in Eq. (5.41) yields
! pi(l —g;) 1 - ploy)
d(x x lo +>lo +lo —_ (5.48)
00 = Yonlog s+ 2 log =g +loe T2
where log[ p;(1 — g,)/9,(1 — p;)] can be represented by w; and
Lo 1-p plwy)
lo +lo
; ET—q " T —ple)
can be represented by w,,,. Then we have
d(x) =Y wix; +w, (5.49)

=1

from which we can see that the optimum discriminant function is linear in x,.
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5.2.5 Probability of Error

The probability of error that would be introduced in the scheme discussed in
Section 5.2.4 is a problem of much concern. Let us again take the two-class
problem for illustration. The classifier will divide the space into two regions, R,
and R,. The decision that x € w, will be made when the pattern x falls into the

region R|; and x € w,, when x falls into R,. Under such circumstances, there will
be two possible types of errors:

1. x falls in region R, but actually x € w,. This gives the probability of
error £, which may be denoted by Prob(x € R, w,).

2. x falls in region R,, but actually x € w,. This gives the probability of
error E,, or Prob(x € R,, w;). Thus the total probability of error is

Perror = PI'Ob(X € Rl |(1)2)p((02) + Pl‘Ob(x € R2lw1)p(w!)

_ JR p(xlp)pley) dx + jR p(xlan)p(or) dx (5.50)

This is the performance criterion that we try to minimize to give a good
classification. The two integrands in expression (5.50) are plotted in Figure 5.1.

Areas under the curves shown by the hatched lines represent E, and £,
where E| = le p(x|wy)p(w,)dx and E, = [, p(xlw,)p(w,)dx. 1t is not difficult
to see that with an arbitrary decision boundary E, represents both the right slash-
hatched and the cross-hatched areas. If the decision boundary is moved to the
right to the optimum position, which is the vertical line passing through the
intersection of the two probability curves, the double-hatched area is eliminated

arbitrary decision optimum decision
boundary \ l/ boundary
® ® I
p(x | wi)p(w;) : p(x | 2)p(@2)
i
R, /i \ R, —
El:j p(x | w2)p(w2)dx Ezzs p(x | @)p(w)dx
R R2

FIGURE 5.1 Probability of error in a two-class problem.
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from the total area and a minimum error would occur. This optimum decision
boundary occurs when x satisfies the following equation:

d\(x) = dy(x) (5.51)
or
p(xjw))p(w,) = p(x|w,)p(w,) (5.52)

and hence the maximum likelihood rule (or Bayes’ decision rule with symmetric
loss function) is the optimum classifier from a minimum probability of error
viewpoint.

To give an analytical expression for the probability of error, let us assume
multivariate normal density functions for the pattern vectors with C; = C, = C;
thus

p(x|w,) p[-1(x—m)TC7'(x —m,)] (5.53)

1
= = €X

and
1

Then, according to Eqgs. (5.20) and (5.21),
X €W if [12 > 012 (555)
or

p(x|w) - (Ly; — Ly)plw,)

(5.56)
p(xlmy) (L — Lyploy)
For the case where the loss functions are symmetric, we have
p(xloy)  plw,) ,
> =¢ (5.57)
p(Xlwp) ~ plwy)
Similarly, x € w, if [;; > 65, that is,
xew, if PE@) Pl 4 (5.58)

px|lw))  plw),)

Substituting the normal density functions for p(x|w,) and p(x|w,), respectively,
we obtain

p(xjw) _exp[-i(x—m)"C”'(x — m)]
p(xlwy)  exp[—1(x — my) C7!(x — my)]

(5.59)
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Taking the logarithm of the ratio p(x|w,)/p(x|w,) and denoting it by p,,, then

pr=—3x—m) CT(x —m) +1(x —my) C7'(x — my)

=xC™'(m; — m,) — §(m; + my)"C~'(m; — m,) (5.60)
Then
Prob(x € R,, w,) = p[pi, > log 6}, (w,] (5.61}
and
Prob(x € Ry, w)) = plp), < log6),|m] (5.62)

The expected value of p, for class 1 can then be found as
E\[pi] =m{C '(m; — my) — {(m; + my)"C”'(m; — my)
= 1[(m, —my)" C”'(m, — m,)] (5.63)
The variance of p,, for class | is defined by
vary[pi) = E\l(p12 — Pi2)’] (5.64)
and equals
vary[pp) = EIx' C7'(m; — my) — L(m, + m,) C™'(m; — m,)
—m{C™'(m; —my) +](m; +m,)" C'(m; — my)]’
= E|[(x - m)"C™'(m, — my)’
= E/[(m; —m)"C'(x — m)(x — m,))  C™'(m; — m,)]
= (my —my) C™'Ey[(x — m;)(x — m;)  C”'(m; —my,)]
=(m, —m,) ' C'CC™'(m; — m,) (5.65)
since E[(x — m}(x — ml)T] = C by definition. Therefore,
var|[p1,] = (m; —m,) C™'(m; —m,)
=r; (5.66)
Substituting back in Eq. (5.63), we obtain
Eilpia] = §r1 (5.67)

where |, equals the Mahalanobis distance between p(x|w,) and p(x|w,). Thus,
for x € w,, the ratio p(x|w,)/p(x|w,) is distributed with a mean equal to %rm_ and
a variance equal to ry,; while for x € w,, that ratio will be distributed with a mean
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equal to —1r, and a variance equal to ry,. Therefore, the probability of

misclassifying a pattern when x € w, is

o0 1 % 2
“%_inggi@u 5.68)
2"12

plp >10g9’-|w)=J :
= 122 log |, «/27’”‘[2

and the probability of misclassifying a pattern when it comes from o, is

log ', 1. 32
BT ] exp (P —3r)
oo 2T 2r),

The total probability of error P, is then

p(piy < logfsiw,) :J ]dp12 (5.69)

Peror = E1 + E5 = p(p13 > log 0)5l@,y)p(w;) + p(p1a < log 8;]w))p(w,)
(5.70)

This analysis can easily be extended to a multiclass case. In the multiclass
cases, there are more ways to be wrong than to be right. So it is simpler to
compute the probability of being correct.

Let us denote the probability of being correct as

M M
P = 2 Problx € R 0) =3 | plxlcogptes) dx (5.71)
=1 =1 JR,

where Prob(x € R,, w;) denotes the probability that x falls in R,, while the true
state of nature is also that x € w;. Summation of Prob(x € R.w,),
i=1,2,..., M, gives the total classification probability of being correct. The
Bayes classifier with symmetric loss function maximizes P, .. by choosing the
regions R; so that the integrands are maximum. Analysis of the multivariate
normal density function for the pattern vectors can be worked out similarly
without too much difficulty.

5.3 OPTIMAL DISCRIMINANT FUNCTIONS FOR
NORMALLY DISTRIBUTED PATTERNS

5.3.1 Normal Distribution
The multivariate normal density function for M pattern classes can be represented

by

p(xlay) = p[-1(x ~ m) C; ' (x — my)]

1
— 5 X
st .,1’/~(mk, Ck) k = 1, 2,..., M,

n = dimensionality of the pattern vector (5.72)
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where . " is the normal density function, m, is the mean vector, and C, is the
covariance matrix for class 4, defined respectively by their expected values over
the patterns belonging to the class &. Thus

m; = E,[x] (5.73)

and

C; = El(x — m)(x — my)"] (5.74)

Pattern samples drawn from a normal population in the pattern space form a
single cluster, the center of which is determined by the mean vector obtained from
the samples and the shape of the cluster is determined by the covariance matrix.
Figure 5.2 shows three different clusters with different shapes. For the cluster in
part {a), m = (0 0) and C =1 (an identity matrix). Because of its symmetry,
C; = C; =0. C; = 1. For the cluster in part (b),

IR 1C, 0
m-_I:O:} and C—[ 0 sz]

C,y; > C;y; while for the cluster in (c) (still in the same figure),

0 Cy Clz]
m= and C=
[1] [Cu Cy
The principal axes of the hyperellipsoids (contours of equal probability

density) are given by the eigenvectors of C with the eigenvalues determining the
relative lengths of these axes.

A useful measure for similarity, known as Mahalanobis distance (r) from
pattern x to mean m, can be defined as

r=x-m/C ' (x-m) (5.75)
The Mahalanobis distance between two classes can similarly be expressed as

ry = {m; — mj)TC_l(m,- —m;) (5.76)
Recall that for # = 1, approximately 95% of the samples x fall in the region

|x —m| < 20, where ¢ is the standard deviation and is equal to c'/2,

5.3.2 Optimal Discriminant Functions

From Eq. (5.31), the discriminant function for x € w; can be put in the following
form:

di(x) = log p(x|wy) + log p(wy) (5.77)
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AN A
@ g
o 1]~ Cu 0
(“)2;? (b)m'{o’ C"lo Cas
Can>Cyy
X2
X1
©) m=’0, C- Cn Cin
1 Cy Cn

FIGURE 5.2 Three clusters with different shapes.

When this discriminant function is applied to the multivariate normal density for
an M-pattern class with

pixjoy) = P[—%(x - mk)TC/:l(x - mk)]

— = X
(zn_)n/Z'Ckll/?_
k=12,....M (5.78)
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the discriminant function d,(x) becomes

1 n —
d{(x) = — 5 log(2m) — {log |C;| — J(x — mg)" C ' (x — my) + log plevy)
(5.79)

It is clear that if the first term on the right-hand side is the same for all %, it can be
eliminated. Then the discriminant function reduces to

dy(x) = —L(x = m) ;' (x — my) +[log p(wy) — 3 logIC4l]  (5.80)
This is a quadratic discriminant function, and can be put in more compact form as
dV(x) = —Lr+f(k) for x € w; (5.81)

where » = (x — m,) C;'(x — m,) is the Mahalanobis distance defined by Eq.
(5.75) and f (k) = log p(w;) — %log |C,|. Let us discuss this discriminant function
in more detail for two different cases.

Case 1. When the covariance matrices are equal for different classes
(C; = C; = C; = C). The physical significance of this is that the separate classes
(or clusters in our special terminology) are of equal size and of similar shape, but
the clusters are centered about different means. Expanding the general equation
for d,(x) [Eq. (5.80)], we get

di(x) = —1xTC7'x = im{C'm; + x"C™'my + log p(w;) — }log |C]
(5.82)
The first and last terms on the right-hand side of Eq. (5.82) are the same for all
classes (i.e., for all k). Then this discriminant function can be put in an even more
compact form as follows:
di(x) = x"C'my + [logp(ew) —imIC'm]  k=1.2,....M
{5.83)

Obviously, this is a linear discriminant function if we treat C™'my,, as w; and treat
the two terms inside the brackets as an augmented term, w; ., ,. For a two-class
problem (M = 2),

d(x) = d\(x) — dy(x)

plwy)
plw,)

=x"'C7Y(m; — m,) + log —4(mIC'm; — m{C'm,) (5.84)
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or

p(wy)

d(x) =x"C"'(m; —m,) + ‘°gp(w2)

—1(m; = my)"C™'m; + m,)]
(5.85)

Case 2. When the covariance matrix C; is of diagonal form o1/, where
02 = |C;]. The physical significance of this is that the cluster has equal
components along all the principal axes, and the distribution is of spherical
shape. Then substitution of g2/ for C; in Eq. (5.80) gives

L(x —m) (x —m,
5( ‘)02( ) 4 [logpley) — Llog 2] (5-86)
k

di(x) = —

because C;' = (1 Jo})I. When the features are statistically independent, and
when each feature has the same variance, 62, then g, = g, = a,Vj, k, that is,

C,=C =01 (5.87)
and

1x"x — 2x"m; + m/m,
di(x) = -3 02" % 1 log plwy) — logd? (5.88)

Again, x”x and 1log o? are the same for all k. We can neglect these two terms in
d.(x) and get a new expression:

di(x) = %xrmk + l:logp(wk) - ziazm,fmk] (5.89)
which can then also be treated as a linear discriminant function.

If in addition to the assumption that C, = C; = o1, the assumption is
made to let p(w,) = 1/K Yk, where K is a constant, the term “log p(w;)” can
also be dropped from the expression for d,(x). Then d,(x) will be further
simplified as

di(x) =x"m; — ] im, |? (5.90)

which is obviously a linear equation.

From the analyses we have done so far, the quadratic discriminant function
as obtained for the multivariate normal density for M-pattern classes can be
simplified into a form that can be implemented by a linear machine, thus making
the problem much simpler.

Equation (5.86) can be simplified into another form, with which we are
familiar. Since it is assumed that C, =C,=C= 6’l and p(w,) =
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plw;) = -+ = 1/K =constant, after dropping the unnecessary terms, Eq. (5.86)
becomes
1 (x - mk)T(x - mk)
di(x) = — <
KX) = —5 3 (5.91)
or simply
d(x) = —(x —m) (x = my) = —|x — m, | (5.92)

which is the same as the minimum distance classifier.

To conclude this section, we would like to add that the multivariate
normal density function mentioned in Sec. 5.3.1 is only one of the probability
density functions available to represent the distribution of random variables.
If K, WP, and fl(x —m)’W(x —m)] replace (2m)”"/2.|C|"'/%, and
exp[— %(x —m)'C(x - m)], respectively, the multivariate normal density func-
tion

p(x) = pl~3(x—m) C7'(x — m)] (5.93)

1
22 C| 7 ex
can be generalized as

p(x) = K,|W['2f[(x — m)" W(x — m)] (5.94)

with K, as the normalizing constant and W as the weight matrix. When different
values and functions are given to K,,, W, and f, different types of density function
will be obtained. Examples of these are Pearson type II and type VII functions.

A very simple example 1s used to illustrate the computation of the mean,
covariance, and the discriminant function by the statistical decision method. A
practical example using computer computation with a large data set is given at the
end of the chapter.

Example. Given pattern points (1, 27.2.27.3. 0. 3.2, and
(2. 3y’ are known to be in class w,. Another set of points, (7.9),
(8. 9)T, 9. 8)7,(9.9)7, and (8. 10)7, are known to be in class ,. It is required
to find a Bayes decision boundary to separate them.

Solution:



Statistical Discriminant Functions

By definition,
C = Ef(x —m)(x —m)']
= E[xxT] — mm’

When it is put in discrete form,
13 . T
C = ﬁquxu — mm;

1 =1

Therefore,

c,=l[(;)(1 2)+(§)(2 2)+(i’)(3 1)

3 2 1 /11
+(2)(3 2)+(3)(2 3)]—3(10)(11 10)
_1(14 -5
'55(—5 10)

Similarly,

wh

1 M
_ T T
C, = A ZXij2j — m;m;
2=l

1714 —s
T25\ -5 10
We have

1 (14 -5
C‘_CZ_C_z_s(—s 10)

The determinant and adjoint of C can be computed as

10 5

1|14 5| 23 (= 3%
'Cl‘E’—s m.—? adlc—(; 4
25 25

The inverse of C, C"'m,, and m7C~'m, are then, respectively, as follows:

1 1 /10 5
Cl'=—adC=—
ic| 115(5 14)

L (32
C'm =—
" (39)

742

T -1
C =
mt M =115
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Bayes decision
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™ Y v v v o
2 4 6 8 10 Xi

FIGURE 5.3 Illustrative example.

The discritninant function for class 1 is

dy(x) =x'C'm; —1m{C'm,

32 39
2 2 — 0.6
5 T s >

Similarly, we obtain

L (127
C'my=—
2 115(167)

m{C 'm, = 22

The discriminant function for class 2 is

dy(x) = x"C"'m, — imIC'm,

— 127 167, _
=6 s — 1

The decision surface is then given by

or

d(x) = d\(x) — dp(x) = 0

d(x) = —0.826x, — 1.11x, + 1035 =0

which is shown in Figure 5.3.
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54 TRAINING FOR STATISTICAL DISCRIMINANT
FUNCTIONS

So far the formulation of the statistical classification problem and the optimum
discriminant function for a normally distributed pattern have been discussed. The
next problem that might interest us will be how to determine the unknown
probability density function. One of the ways of doing this is by functional
approximation. Assume that we wish to approximate p(x|w;) by a set of functions

K
p(x|w;) = kgc,-kcbk(x) (5.95)

where the caret sign over p(-) represents the estimated value. The ¢, (x) are
arbitrary functions and can be a set of some basic functions, which may be
Hermite polynomials or others. The problem that we have now becomes to seek
the coefficients ¢, so that the mean squared error

0= J [p(xloy) — p(xleop)} dx (5.96)

over all x for class w; can be minimized. After substitution of Eq. (5.95) in Eq.
(5.96), we have

K

0 = | [pxiw) — Leusy o dx (597)
A necessary condition for minimum Q is

30 B

55“0 k=1,...,K (5.98)
or

a0 X

=2 J [p(xlwf) - Zcmk(x)]qbk(x)dx =0 (5.99)

ik X k=1

from which we get
| mx)[ élc.-kqbk(x)] ax = | duopixian)ax (5.100)
Since, by definition, [, ¢, (x)p(x|;) dx is the expected value E;{d, (x)], then
éc,-k L dr(x)Pp(x)dx = E;[,(x)] k=1,...,K (5.101)

A set of K linear equations in ¢, (k = 1, ... K) for a certain { can be obtained to
solve for ¢, but knowledge of p(x|w;) is required.
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Knowing that £[¢,(x)] = | ¢,(X)p(x|w,) dx can be approximated by

N,

Ef00] = 5 £ (%) (5.10)
ij=

where N, is the number of pattern samples in class #, then

K 1 N,
Zc,kj GG dx =3 dlx) k=1 K (5.103)
k=1 x ij=1

This is a set of K linear equations and can be solved for the K ¢,(x)’s. If, in
particular, orthonormal functions are chosen for the ¢,(x)’s, that is,

J $i(x)¢,(x) dx = [(1) i:j (5.104)
then
1Y k=1,...,K
Cig = N 2 (X)) i=1.....M (5.105)

ij=1

Once the coefficients ¢;, have been determined, the density function p(x]w,) is
formed. Note that the x, do not have to be stored but can be presented in
sequential order. The ¢; can then be obtained iteratively from the following
relation:

1
cx(N; + 1) = N—“[Mcik(]vi) + ¢r(Xy 11)] (5.106)

where ¢, (N;) and cy(N; + 1) represent, respectively, the coefficients obtained

with N, and N, + | pattern samples. For more detailed discussion on this topic,
see Tou and Gonzales (1974).

5.5 APPLICATION TO A LARGE DATA-SET
PROBLEM: A PRACTICAL EXAMPLE

Problems with large data sets are very common in our daily life. Many such
problems can be found in agriculture, industry, and commerce as well as defense.
An example consisting of three basic color bands (red, green, and blue), each with
254 x 606 digitizing picture elements from an aerial photograph of a water
treatment plant area, is used for illustration. See Figure 5.6 or the computer-
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TABLE 5.1 Means and Standard
Deviations for Red, Green, and Blue
Spectral Data Sets of the Image

Mean Standard deviation
Red 3380 17.84
Green 38.11 26.51
Blue 25.12 10.17

processed image. Every pixel (picture element) in the image corresponds to a
pattern in the pattern space:

il

*ij3

The norm of the vector representing this pattern point is ,/Zizl Xy OF

1/2

|XU|:(X£XU i:1,2,...,254;]‘21,21---1606

x,; are computed and normalized to 256 gray levels for each of the three channels
above.

The aerial image is mainly the photoreflection of the ground objects. From
that image a fairly good idea can be obtained about what is in the image if a set of
spectral responses, one for each spectral band, is chosen as the basis for analysis
{see Table 5.1).

A histogram of the data set gives us a rough idea of the gray-level
distribution among the pixels. From the information given in the histogram, we
can then set the appropriate gray-level limits to separate the pattern points into
categories. A small set of known data (or ground fruth, as we usually call them)
can be used to train the system, so that the pattern points in the whole image
(254 x 606 pattern points altogether in our data set}) can be classified. Figure 5 4a,
b, and ¢ show, respectively, the histograms for the red, green, and blue bands of
the aerial photograph.

A portion of the symbol-coding map reproduced by ordinary line printer is
shown in Figure 5.5, in which x’s represent object points with gray levels below
20.49; +’s represent those below 26.94 but above 20.49; —’s represent those
below 35.48 but above 26.94; and blanks represent those above 35.48. All values
are converted to a percentage of the whole gray-level range. A digitized image of
the aerial photograph is shown in Figure 5.6 to check the effectiveness of the use
of the line printer. This image was plotted with the norm values of the pixels.
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FIGURE 5.4a Histogram of the data set in the spectral range 0.6-0.7 um (red).
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PROBLEMS

5.1 We are given the following patterns and their class belongings:

(1,0),(3,0),(2,1),(1,2),(3,2) € w,
(4,3),(4,5).(5,4),(6,3),(6,5) € w,

Obtain the equation of the Bayes decision boundary between the two
classes by assuming that p(w,) = p(w,) = 1.

5.2 Consider the following patterns:

©.1.0), (0. 1, 1), (1,0, 1), (1,1, 1)
€
0.0.0).0.0.1).(1,0.0).(1.1.0) | ="



FIGURE 5.5 Computer symbol-coding map obtained from the data set given: (a) from columns 200 to 299; (b) from columns 300 to 399;
(c) from columns 400 to 499; (d) from columns 500 to 599; (e) from columns 600 to 699,
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FIGURE 5.6 Computer image plot from the data set given. This image is plotted with norm values. (Data courtesy of Frederick Luce,
ORSER, Pennsylvania State University.)
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5.3

54

5.5

5.6

and
(5.5,5),(5.6,6),(6,5,5),(6,6,6)
(5,6,5).(5,5,6).(6,5,6),(6,6,5)

Find the Bayes decision surface between the two classes of patterns,
assuming that they have normal probability density functions and that

ply) = p(w;) = 5.

Derive a Bayes discriminant function for a negative loss function,
such as

—h,  ifk=i

Li=1 o otherwise (k # i)

Derive the Bayes discriminant function for patterns with independent
binary components, and see whether the discriminant function is
linear.

Show that for x € w,, the ratio p(x|w,)/p(x|w,) will be distributed
with a mean equal to —1r),, and a variance equal to r),.

From the mean and covariance of the normally distributed multi-
variate problems, we can easily estimate respectively the center and
the shape of the cluster, and vice versa. Given the relative values of
m, Cy;. Ci,, Gy, Cyy, draw the center and shape of the clusters for
following different cases:

Case I:
m’ =[0 0]
Ch=Cp=1
Cp=0C =0
Case 1I:
m’ =[2 0]
Ci > Cy
Cp=0 =0
Case III:
m=1[1 0]
Ch<Cy
Cp=0Cy =0
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5.7

Case IV:
m=1[0 3]
Cp > Cy
Cpp = C2l =0

Case V:
m=[0 2]
Cn > Cp
Cp#Cn #0

Case VI:
m=1[2 2]
Gy < Cy
Cia#Cy #0

Chapter 5

According to the maximum likelthood rule, the discriminant function

d,(x) can be simplified as

T -1 I -
di(x) =x"C'my — ym, C'my

Find the Bayes decision boundary to separate the following two

classes:

Patterns belonging to class 1 (w,):

X, = (2, 3)
x, =4, 1)
X3 = (4, 3)
X, = (4, 5)7

x5 = (6, 3)7
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Patterns belonging to class 2 (w,):
Xy = (=3, —1)f
Xy = (=3, =3)"
Xy = (-3, -5
Xpe = (=1, =3)'

X25 = ("'5, "‘3)T
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Clustering Analysis and
Unsupervised Learning

6.1 INTRODUCTION
6.1.1 Definition of Clustering

What we have discussed so far has been supervised learning; that is, there is a
supervisor to teach the system how to classify a known set of patterns first, and
then let the system go ahead freely to classify other patterns. In such systems we
usually need a priori information (information on syntax, semantics, or prag-
matics) to form the basis of teaching.

In this chapter we discuss nonsupervised learning, in which the classifica-
tion process will not depend on a priori information. As a matter of fact, it
happens quite frequently that there does not exist much a priori knowledge about
the patterns; neither can the proper training pattern sets be obtained.

Clustering is the nonsupervised classification of objects. It is the process of
generating classes without any a priori knowledge of prototype classification.

When we are given M patterns, X, X, ..., Xy, contained in the pattern
space S, the process of clustering can be formally stated as: to seek the regions
S1,S,,....Sk such that every x,,i = 1,2, ..., M, falls into one of these regions
and no x, falls in two regions; that is,

SlUS:zUSSUUSK:S
S;NS; =¥  Vi#j

where U and N stand for union and intersection, respectively.

(6.1)

112
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Algorithms derived for clustering classify objects into clusters by natural
association according to some similarity measures. It is expected that the degree
of natural association is high among members belonging to the same category
and low among members of different categories.

6.1.2 Similarity Measure

From the definition of clustering, we are to cluster, or form into each class, those
patterns x; that are as much alike as possible, and hence we need some kind of
similarity measure (or dissimilarity measure). If { denotes the dissimilarity
measure between two patterns, it is obvious that

é‘(xn X,—) =0
but
(X x)#0  Yj#i (6.2)

The similarity measure (or dissimilarity measure) is usually given in
numerical form to indicate the degree of natural association or degree of
resemblance between patterns in a group, between a patiern and a group of
patterns, or between pattern groups.

Many different functions, such as the inertia function and the fuzzy
membership function, have also been suggested as the similarity measure, but
the most common ones are described next.

Euclidean Distance

Euclidean distance is the simplest and most frequently used measure and is
represented by

d*(x, x,) = (x; — x)7(x, — x) = |x, — x;]? (6.3)

in multidimensional euclidean space. It may be all right to use this distance as a
similarity measure if the relative size of the dimension has significance. If not, we
should consider weighted euclidean distance, which is

n

2 2

d(x;, X;) = IEI o (g — Xi5) (6.4)
where X, = [x,, Xo;, . . .. %,;] 5 X;; and xy, are the kth components of x, and x;,
respectively; and o, 1s the weighting coefficient. In particular, let us let
m,, = [m,,,. My, ....m,,]" be the mean of the mth cluster (we still presume
the class is unknown), and let

1
Otk = 5 (65)

T
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where o, = [0},, 0. - .., 0,,] and 6} is the variance of the mth cluster in the
kth direction. Then the weighted euclidean distance from x, to the mth cluster is
(X —my )
m(x mm) - Z _l_'z_b!l_ (66)
k=1 T ko

The cluster shapes obtained by using this measure have loci of equal d2, which
are hyperellipsoids aligned with the axes of the n-dimensional pattern space.

Mahalanobis Distance
The squared Mahalanobis distance from x, to X; is in the form
rx,. x) = (x, —x) C7\(x, — x)) (6.7)
where C~! is the inverse of the covariance matrix.
Tanimoto Coefficient

Tanimoto suggested a similarity ratio known as the Tanimoto coefficient:

T

dl(xlv x[) = T x'ij T (68)
- XX, +X X — X/ X,

where x7x, denotes the number of common attrlbutes between X,, and x;, X, Tx,
denotes the number of attributes possessed by x,, and x x; denotes the number of
attributes possessed by x. The denominator then glves the number of attributes
that are in x; or x, but not in both. The entire expression will therefore represent
the ratio of the number of common attributes between x; and x, to the number of
attributes that are in either one of the vectors x,, X, but not in' both.

6.1.3 Types of Clustering Algorithms
Classification of Clustering Algorithms

Lots of clustering algorithms have been suggested. They can be grouped into
direct (constructive) or indirect (optimization) algorithms according to whether or
not a criterion function is used in the clustering process. For a direct approach,
sometimes called the heuristic approach, it is simply to isolate pattern classes
without the necessity of using a criterion function, whereas for an indirect
approach we do use a criterion function to optimize the classification.

Very frequently, clustering algorithms can be classified as an agglomerative
or a divisive approach according to the clustering process being worked along the
“bottom-up” or the “top-down” direction. A clustering algorithm is said to be
agglomerative if it starts from isolated patterns and coalesces the nearest patterns
or groups according to a threshold from the bottom up to form hierarchies.
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A clustering algorithm is said to be divisive if it starts from a set of patterns
and divides along the top-down direction on minimizing or maximizing some
estimating function into optimum clusters.

Many programs have been written in each of these algorithms, but quite a
lot have tried to take advantage of both and include both divisive and agglom-
erative approaches in one program. This leads to another classification based on
whether the number of classes is known or unknown beforchand. This is the
method we use in this book.

Intraset and Interset Distances: OneType of Criterion*

We mentioned earlier that the degree of natural association is expected to be high
among members belonging to the same category, and low among members of
different categories. In other words, the intraset distance should be small, whereas
the interset distance should be large.

Mathematically, the interset distance between two separate sets is

Dy, = DX )  i=1.2.....Nij=12..N, (6.9)
oY
1NN
Dy, = N1N21=ZU;D (xi, x) (6.10)

which is the average squared distance between points of separate classes. The
subscripts 1 and 2 in the pattern sets [x}] and [x}] represent classes w, and w,,
respectively, and N; and N, are the number of pattern samples in classes w, and
w,, respectively.

The intraset distance for a set of N patterns (all patterns belonging to the
same class) can be derived similarly. Since

DHx', %) = 3 (x — x,)° (6.11)
k=1
the mean squared distance from a specific X' to N — 1 other patterns in the same
set is
N n

DI(x', [x/]) = N—l— Y Sk — X (6.12)

T A =lk=l

*See Tou and Gonzalez (1974) and Babu (1973) for supplementary reading.
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The intraset distance or the average over all N patterns in the set is then

—_ 1 ¥ 1 d
D; = DX([x'], [x/]) = NZ[]VTTZ 3 (g —XL)Z] (6.13)
j=| j=|k=l
or
Dy =i 3| 5 3 — ) (6.14)
ii = Ve Xp — ’
N_1k=] N21=|f=! k k
Expanding the terms inside the brackets yields
D;; = D*([x]. [x/])
N X[rax1y o, 1N 1N LA A
= Y Y T - 2 TR N+ D )
N—@;N§N§* NEAN G T NN S
N ~[1n —— [N
=—— Y =2 ) = 2xx] + =Y () 6.15)
N—IAELNjg k (ot NIZZI(I‘ (

Since we are working on the same pattern set,

W)t = () (6.16)
we have
DI T = =2 S 1) — ()2
D,; = D¥([x], [x/]) = AT__—TEI[(X’;() — ()] (6.17)

Note that, by definition, the variance of the kth component of N patterns is given
by

1 N —_—

(00" = 57 L0k = x)°
1 X 2N = 1X— 6.18
=NZ(X2)2—N§XW;(+E;(X}()2 (6.18)

I

i

2 _ T2
= (%" — (%)
after simplification. Therefore, the intraset distance is now

D; = D*([x]. [x/]) = 2N 3 o (6.19)
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6.1.4 General Remarks

Most clustering algorithms are heuristic. Most papers on clustering present
experimental evidence of results to illustrate the effectiveness of their clustering
processes. But to our knowledge, no objective quantitative measure of clustering
performance is yet available, although a lot of effort has been expended toward
that end. We are not quite certain, at least at the moment, how data dependent the
results are.

In clustering applications we generally try to locate the modes, that is, to
obtain the local maximum of the probability density if the number M of the class
is known. When the number of classes is unknown, we usually try to obtain an
estimate of the number and location of modes, that is, to find the natural grouping
of patterns. Thus we “learn” something about the statistics. For example, the
mean and covariance of the data to be analyzed are useful for data preprocessing
and training of the minimum distance classifier for multiple classes as well as for
on-line adaptive classification in a nonstationary environment. This is because
more significant features from the measurement vectors are extracted to realize
more efficient and more accurate pattern classification.

6.2 CLUSTERING WITH AN UNKNOWN NUMBER
OF CLASSES

6.2.1 Adaptive Sample Set Construction
(Heuristic Method)

When the number of classes is unknown, classification by clustering is actually to
construct the probability densities from pattern samples. Adaptive sample set
construction 1s one of the approaches commonly used.

The essential point of this algorithm is to build up clusters by using
distance measure. The first cluster can be chosen arbitrarily. Once the cluster is
chosen, try to assign pattern samples to it if the distance from a sample to this
cluster center is less than a threshold, If not, form a new cluster. When a pattern
sample falls in a cluster, the mean and variance of that cluster will be adjusted.
Repeat the process until all the pattern samples are assigned. The whole
procedure consists of the following steps:

Step 1. Take the first sample as representative of the first cluster:
2 =X

where z, is the first cluster center.

Step 2. Take the next sample and compute its distance (similarity
measure) to all the existing clusters (when starting, there is
only one cluster).
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a. Assign x to z; (the ith cluster) if
dx,z;) <0t 0<6<l1 (6.20)

where 7 is the membership boundary for a specified cluster.
Its value is properly set by the designer.

b. Do not assign x to z; if
dix,z;) > 1 (6.21)

c. No decision will be made on x if x falls in the “intermediate
region” for z;, as shown in Figure 6.1.
Step 3. a. Each time a new x is assigned to z;, compute z,(n + 1) and
C(n + 1) according to the following expressions:

1

z(n+1) =~ 7 [nz,(n) + X] (6.22)
for=1,2,....M
Cln+1) = ~—7 [nClm) + (x — zn + Y] (6.23)

Where n is the number of pattern samples already assigned to
z; and x 1s the (# + 1)st such sample. z;(n) and C(n), the
variance, were already computed from the » samples.

b. Form a new cluster z; if
d(x,z;) > 1 Vi (6.24)

Step 4. Repeat steps 2 and 3 until all pattern samples have been assigned.
There would be some reassignment of x when all x are again
passed through in order. This is because the means and variances
have been adjusted with each x assigned to z,.

d(x, zi)-T
d(x, z,)= 0T

cluster center

Z4

Indeterminate
region

FIGURE 6.1 Clustering based on a distance measure.
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Step 5. After the training is considered complete (that means that x no
longer changes class belongings, or some number of x are
unassigned each time), we can let the system go freely to do
the clustering on a large number of pattern samples. No inde-
terminate region will exist this time. All x’s falling on the
indeterminate region may be assigned to the nearest class
according to the minimum distance rule. All those x’s could be
considered unclassified if their distances to all cluster centers are
greater than .

This algorithm is simple and efficient. Other than these, it possesses the
following advantages: Minimum computations are required; pattern samples are
processed sequentially without the necessity of being stored; and there is no need
to have the number of classes specified.

On the other hand., there are some drawbacks to the use of this algorithm.
First, strong assumptions are required, such as that clusters themselves should be
tight and also that clusters should be widely separated from one another. Second,
clustering results are dependent on the order of presentation of x’s and also on the
first x being used as the initial cluster center. If, for example, cluster center z, (and
also C) changes, or x(n) is presented at a later order » + m, that pattern sample
might be classified differently. Also, different results of clustering might have

resulted during training. Third, clustering results also depend heavily on the value
of 70 chosen.

6.2.2 Batchelor and Wilkins'Algorithm

Batchelor and Wilkins suggested another simple heuristic procedure for cluster-
ing, sometimes known as the maximum distance algorithm. An artificially simple
example consisting of 10 two-dimensional patterns as shown in Figure 6.2a and b
is used to illustrate the procedure of this algorithm.

Step 1. Arbitrarily, let x, be the first cluster center, designated by z,.

Step 2. Determine the pattern sample farthest from x,, which is x,. Call it
cluster center z,.

Step 3. Compute the distance from each remaining pattern sample to z,
and z,.

Step 4. Save the minimum distance for each pair of these computations.

Step 5. Select the maximum of these minimum distances.

Step 6. If this distance is appreciably greater than a fraction of the
distance d(z,, z,), call the corresponding sample cluster center
z;. Otherwise, the algorithm is terminated.

Step 7. Compute the distance from each of the three established cluster
centers to the remaining samples and save the minimum of every
group of three distances. Again, select the maximum of these
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(a)

FIGURE 6.2a Illustrative example for Batchelor and Wilkins’ algorithm. 10 two-
dimensional patterns.

minimum distances. If this distance is an appreciable fraction of
the “typical” previous maximum distances, the corresponding
sample becomes cluster center z,. Otherwise, the algorithm is
terminated.

Step 8. Repeat until the new maximum distance at a particular step
fails to satisfy the condition for the creation of a new cluster
center.

Step 9. Assign each sample to its nearest cluster center.

Figure 6.2b tabulates the intermediate clustering results. x,, X¢, and xg are
the three cluster centers. [X,. X3, X,], [Xz, X¢), and [Xs. X7, Xg, Xo, X ] are the three
cluster domains.
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z, =X

2. X =zl > 1% — )] > X0 —Zg| > |Xg — 24| > IXg — 74| > |x; — X,|

> X5 —zy| > X3 — 2| > x4 — 2]

Letz, = x4

3. Xy — 24| < x4 — 2,

X3~ Z;| < |X3 — Z,]

Xs — 2] < [X5 — 2|

[Xg — 2| < |Xg — 2]

X7 — 24| < X7 — 2]

|Xg — 25| < [Xg — Z|

X10 — Z3| < [X39 — 2]

X, — 2| < |Xp — 2]

Save all distances on left in step 3.

The maximum of distances saved in step 4 is |xg — Z,].

Since |xg — 25| > 112, — 2], let 23 = xg.

N o v s

X4 —24] < X4 — 23] < |x4 — 23]

X3 — 2| < X3 — 23] < |x3 — 2z,

IXs — 23] < |Xs — Z;| < |X5 — Zy]

X7 — 23| < |X7 — 2| < |X7 = Z3]

IXg — 23] < |Xg — 2| < [xXg — 2]

IX10 — Z3] < |X)0 — 23] < |X}9 — Z4]

1X; — 2, < IX; — 23] < [X; — 2]

8. Save all distances on left.

The maximum of these minimum distances is |x; — ;.

10. Since |x; —z,| <31 Avg[lz, — 2, |23 — 2,|] and since the
condition for creation of a new cluster is not satisfied, the
algorithm terminates.

FIGURE 6.2b Intermediate clustering results.

6.2.3 Hierarchical Clustering Algorithm Based on
k-Nearest Neighbors

Natural association by minimum distance (closeness measure) works very well
for many cases that can be distinctly separated. However, it does not work well for
sets of data where there are no clearly cut boundary surfaces among them, nor for
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FIGURE 6.3 Examples showing pattern sets with no clearly cut boundaries or patterns
belenging to different classes are interweaved together.

those patterns which belong to different classes but are being interweaved
together, as shown in Figures 6.3 and 6.4. For such kinds of problem an approach
called nearest neighbor classification might be useful for their solution. The
nearest neighbor classification 1s a process to assign a pattern point to a class to
which its nearest neighbor belongs. If membership is decided by a majority vote
of the k-nearest neighbors, the procedure will be called a k-nearest neighbor

FIGURE 6.4 Examples showing pattern sets with no clearly cut boundaries or pattern
belonging to different classes are interweaved together.
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decision rule. The clustering algorithm discussed in this section follows the
concept suggested by Mizoguchi and Kakusho (1978). The procedure consists of
two stages, In the first stage, pregrouping of data is made to obtain subclusters
(steps 1 to 4). In the second stage (i.e., the remaining part of the algorithm), the
subclusters are merged hierarchically by using a similarity measure.

The algorithm can be generalized as follows.

l.
2.

Determine k& appropriately.
Compute Q,(x,), P,(x,), and &.(x,) for every pattern sample, where
Q,(x;) 1s a set of k-nearest neighbors of the sample pattern point x,,

i=1,2,..., N, based on a euclidean distance measure. P,(x,) is the
potential of the pattern sample point x, and is defined as
1
Pix)=7 T dx.x)
x,€0;(x,)

d(x,, x,) 1s the dissimilarity measure between sample points x, and X,.
Obviously, d(x;, x,) = 0. The smaller the value of P,(x,), the larger the
potential of x, to be a cluster center. For any pattern point, we can
always find its k-nearest neighbors, but the distance measure (length)
may not be the same. £, (x;) is a set of sample points k-adjacent to the
sample point x,. Figure 6.5 illustrates geometrically the definitions of
Qu(x;) and i (x,) for a set of points [Xy, X5, X3, ..., X} X, Xp, X.].
Points X, x,, X3, ... and x4 are k-nearest neighbors (kNN) of x,, or x,
is k-adjacent to these six pattern points. If P.(x,) has the highest
potential among the six pattern points, X,, X5, X3. . .., X¢, then these six

pattern points x,, X,, X3, ..., X, will cluster to x, to form a cluster as
shown. So we have

Qu(x,) = [x1, X5, .. .. X¢] kNN of x,.

Qu(x,) =[x, Xpv o ... ] kNN of x,
Qk(xb) = [x“ ) G ] kNN of Xy
Ev(x,) =[x, x4, X,y . ] a set of pattern points which are

k-adjacent to x,

ci(x;) = [X,. Xp, X, .. .] implies that x, is a k-nearest neighbor of x,; it
is also a k-nearest neighbor of x,, x,, etc. It also implies that there are
possibilities to assign x, either to x, or to x,, X, ... depending on
which one among P,(x,), Pi(x;), Pr(x.), ... has the highest potential
to be the subcluster [i.e., which one among P.(x,), P(x,), P,(x,) has
the smallest value]. Note that x,, x,,... may not be the k-nearest
neighbor of x;. In other words, x, may not be k-adjacent to x,. This
means that there is no possibility to assign x, to x,. So, we have to
compute Q,(.) and & () for every pattern point to determine its
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FIGURE 6.5 Definitions of Q,(x,) and &,(x,).

subordination; i.e., to determine whether it is to be subordinated to
some other pattern points, or other pattern points subordinated to it to
form a subcluster. Through such a sequence operation of subordina-
tion, all the pattern points will be agglomerated to form a subcluster or
a certain number of subclusters.

3. Subordinate every point x, to the point x, such that

Pk(xj) = X ren‘:l‘?‘ Pk(xm)

That is, subordinate every sample point X, to x, that is in the set &;(x;)
and has the smallest value of P,(x;), or has the highest potential to be a
subcluster. If Py (x,) = P,(x;), then this pattern point x, will subordinate
to no point,
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4. Detect and count the subclustering points and assign every point to its
nearest subclusters. These four steps completes the data pregrouping
task in the first stage of the algorithm.

5. Merge the subclusters according to whether or not there are £-boundary
points between the two neighboring subclusters.

d.

If there exist k-boundary point sets between pairs of neighboring
subclusters, merge the two most similar subclusters among those
unordered pairs of subclusters by a similarity measure, SIM(m, »),
which is

SIM, (m, n) x SIM,(m. n)

where m and » denote the subclusters. SIM,(m, ») represents the
difference in density between the cluster and the boundary, and can
be used to detect the valley in the pattern dispersion. SIM,(m, n)
represents the relative size of the boundary to that of the cluster,
and can be used to detect the neck between two clusters. Mathe-
matically,

min[P5¢(m), P;*(n)]
SIM, (m, n) = k k
1, ) max[BP", BP'"]

and

N(Y[,"'") + N(Y,?'m)]

SIMa (. 1) = S NG, ). N )]

Let us elaborate a little bit in details about the terms: P;°(m),
P(n), BP", BP™, Y™, Y,"™, N(W,), and N(W,). Figure 6.6
shows the pattern points that are in subcluster m and are also the &-
nearest neighbors of ¢,, which is the center of subcluster m. It also
shows in the same figure those pattern points that are in subcluster
n and are also the k-nearest neighbors of ¢,, the center of the
subcluster n. Figure 6.7 shows the pattern points that are in
subcluster m and are also the k-nearest neighbors of some pattern
points belonging to subcluster #.

Define P;*(m) as the average of P,(x,) over all the points that are
in subcluster m and are also the k-nearest neighbors of the cluster
center ¢, (the central point of the subcluster m). Similar definition
can be made to Pi°(n). Mathematically, P;°(m) can be represented
as

1
> Pi(x;)

Pif(m) =
Nl (e,)) N Wl s erayicnnm,)
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Xi€ Qu(Cw) and x; M W, 2 8

FIGURE 6.6 Pattern points that are in subcluster m and are also the k-nearest neighbors
of ¢,,, which is the center of subcluster m.

where W, is a set of points contained in subcluster m, and N(.)
denotes the set of elements of the set in parentheses.

We can also define the k-boundary point set of subcluster m to
subcluster n as ¥;"", which is the set of points that are in subcluster
m, but their respective k-adjacent points are in subcluster n. Or

Y'" =[x;|x, € W, and {;(x;) N W, # 0]

/// %
clysher '
NANZA
<7/ \ )
Ve \

" N

/clurter
|l

——

FIGURE 6.7 Pattern points that are in subcluster m and are also the k-nearest neighbors
of some pattern points belonging to subcluster n.
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With this ¥;"", we can define BP}"", the average of P;(x,) over all
x, in ¥;"" as
1
BP" = -5 2 Pi(%)
k (Y’( ' )X,EY:.J]

This BP}"" provides information of the density of the boundary
points. The ratio of the density of the boundary points over the
density of the cluster is a good measure for us to merge any two
neighboring subclusters. However, it should be remembered that in
the above expression, BP,"" is computed in terms of distance, and
therefore the smaller the computed value of the BP}"", the denser
will the boundary points distribution. This is also true in the
computation of the density of the cluster. So, to find the ratio of
the density of BP;"" to that of the cluster, we should find the ratio
of the numerical values of P{*(m) [or P{¥(n)] to BP;"". To play safe,
let us choose the smaller boundary density value from subclusters
m and n, and the larger subcluster density value from subclusters m
and ». Thus, we obtain the SIM; measure as follows:

min[P5*(m), PX(n))
max[BP;"", BP;""]

SIM,(m, n) =

In brief, SIM, (m, n) is a similarity measure. It is expected that this
SIM,; measure is high for the two neighboring subclusters to be
merged, otherwise leave them as two separate clusters. SIM;
measure is therefore useful to detect the valley in the pattern
dispersion (see Figure 6.8).

It would be nice to take the relative size of the boundary and that
of the subclusters into consideration, when we design an algorithm
for the merging of two neighboring subclusters. We then have

SIM,(m, n), which is
N(Y,:"'") + N(Y,:,’"")

SIMz(m, n) - ) rnin[N(Wm)~ N( Wn)]

where the numerator N(¥"") + N(¥;"™) represent the sum of two
numbers, namely, (1) the number of those points that are in
subcluster m and their “k-adjacent to them” points are in subclus-
ter n; and (2) the number of those points that are in subcluster » and
their “k-adjacent to them” points are in subcluster m. The denomi-
nator, 2 min[N(W,,), N(W,)], represents the total number of pattern
points in these two neighboring subclusters. These two subclusters
m and n are to be merged when SIM, is large. Otherwise, leave
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FIGURE 6.8 Set of patterns with valley and neck distribution. (a) Patterns with neck
distribution. (b) Patterns with valley distribution.

them as two separate clusters. This means SIM, measure is useful
to detect the necks between two clusters in the pattern dispersion
(see Figure 6.8). Taking both factors as mentioned above into
consideration, we therefore have the following SIM(m, rn) measure:

SIM(m, n) = SIM, (m, n) * SIM,(m, n)

for the merging of pairs of neighboring subclusters.
b. If no k-boundary point set exists between any pair of subclusters,
use distance measure to merge subclusters p and g such that

D(p,q) = min d(m,n)
(m,n)ey

where ¢ denotes a set of unordered pairs of subclusters.
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6.3 CLUSTERING WITH A KNOWN NUMBER OF
CLASSES

In this section we assume that the number of classes in the image is known or that
at least a rough idea of the number and locations of clusters is available. Several
algorithms will be introduced.

6.3.1 Minimization of Sum of Squared Distance

This algorithm is based on the minimization of the sum of squared distances from
all points in a cluster domain to the cluster center, that is,

min Y (x —z)’ (6.34)
xS, (k)

where (k) is the cluster domain for cluster center z, at the kth iteration. The
clustering procedure of this algorithm can be illustrated by means of an example
as shown on Figure 6.9. For clarity 20 two-dimensional pattern samples are
considered in this example.

11(3)-(1.13,1?2

zl(l)-xl

FIGURE 6.9 Illustrative example for the K-means algorithm.



130

Chapter 6

Arbitrarily choose two samples as the initial cluster centers.
z,(1) = x, = (0,0)"

6.35

(1) =x, = (1,0)" (639

The number inside the brackets indexes the iteration order.

Distribute the pattern samples x among the chosen cluster domains
according to the following rule:

x; € §/(1) since |x, — z(1)] < [x; — z(1)|
Viii=1.2,....K,i#£1 (6.36)

X4 € 55(1) since [X4 — 2,(1)] < |x4 — z,(1)]
viii=1,2,...,K,i#2 (637)
where K = 2 in this case. Therefore,
S1(D) =[x, x3]
$H(1) =Xy, X4, X5, . .., Xg¢]

Update the cluster centers with Eq. (6.38):

1
zj(k+l):-— Z X j=12,...,K (6.38)
1 xe8,(k)
or
1 0.0
7,(2)=— x =1(x +x):( )
! NH%:“) PR 0.5
and

1 5.83
3,(2) =— X =X, +X +---+x)=( )
2 N“E%;” ;g T 20 5.28

Note that these adjusted cluster centers, which are the means of all the
pattern samples in their respective cluster domains, will minimize the
sum of squared distances from all points in §;(k} to the new cluster
centers. In this case, j =2, k =2. N, and N, are respectively the
number of samples in §;(1) and S;(1).

Since z;(2) # z(1), j = 1,2, the algorithm has not converged. We
return to step 2 and repeat the process. Otherwise, the procedure is
terminated.

With the new cluster centers, we obtain

IxX; — 2, (2)) < |x; — 2,(2)] for/=1,2,...,8
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and
1x; — 2,(2)| < |x; — 2,(2)] for/ =9,10,...,20
Cluster domain §;(2) and S,(2) are, respectively,
S$12) =[x, X3, ..., xg]
$:(2) = [x9, X0, - . -, X0]
6. Update the cluster centers:

1 1.13
z(3)=— ¥ x=1i(x;+x +"'+Xg)=( )
l N s B L 1.25

3) = - L (Xg 4 Xj 4 - + Xp9) (800)
e P X e X =
z,(3) N, xe%?(Z)x 5 (X + Xy 20 717

7. Return to step 2, since
20) #£2(2) j=1.2

8. Yields the same results as in the previous iteration:
5;3)=51(2) and  $03)=5(2)

9. Since z,(4) = z;,(3),j = 1, 2, the algorithm has converged. The cluster
centers we finally obtain are

z_(LB) z_(&m)
7125 27 \7.17

From the procedure listed above it is not difficult to see that the cluster
centers are sequentially updated. This is why the term K-means is sometimes used
for this algorithm. It is also not difficult to see that the performance of this K-
means algorithm is influenced by the number of cluster centers initially chosen
and also by the order in which pattern samples are passed through to the system.
It is also influenced by the geometrical properties of the data to be analyzed.

6.3.2 ISODATA Algorithm

ISODATA is an acronym for Iterative Self-Organizing Data Analysis Technigues
A (the 4 being added to make the word pronounciable). In this algorithm, several
process parameters are to be specified:

M = number of clusters desired

n = minimum number of samples desired in a cluster

o, = maximum standard deviation allowed in our problem
0 = minimum distance required between clusters
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L = maximum number of pairs of cluster centers that can be lumped
I = number of iterations allowed

The procedure of this algorithm can be generalized as follows:

1. Choose some initial cluster centers.

Assign patterns to their nearest cluster centers.

3. Recompute the cluster centers (take the average of the samples in their
domains as their new cluster centers).

4, Check and see if any cluster does not have enough members. If so,
discard that cluster.

5. Compute the standard deviation for each cluster domain and see if it is
greater than the maximum value allowed. If so, and if it is also found
that the average distance of the samples in cluster domain §; from their
corresponding cluster center is greater than the overall average distance
of the samples from their respective cluster centers, then split that
cluster into two.

6. Compute the pairwise distances among all cluster centers. If some of
them are smaller than the minimum distance allowed, combine that pair
of clusters into one according to some suggested rule.

The whole procedure can be depicted with a flow diagram as shown in
Figure 6.10. Explanations for the terms used in the figure are as follows:

X = pattern samples
S; = cluster domain
z; = cluster center
N; = number of samples in S,
N, = arbitrarily chosen initial number of cluster centers
N = total number of samples
D; = average distance of samples in cluster domain S; from z;
D = overall average distance of samples from their respective cluster
centers
z,.z; = cluster centers to be lumped

N;. Njy = number of samples in clusters z;, z;

Example. Apply the ISODATA algorithm to the problem of 20 two-
dimensional pattern samples discussed in Section 6.3.1.

X X2 X3 X4 X5 X X7 Xy X9 X10
0,0) (1,0) (0,1) (1.1) (2,1) (1.2) (2.2) (2.3) (6,6) (7,06
Xy X2 X3 X14 Xys Xig X7 X3 Xy9 X0

(8,6) 6.7 (7,7 (8.7 9.7y (7,8) (8,8 (9.8) (10,8) (11,8)
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START

Specify M, "l A 8, L,1

ITER= 1
Arbitrarily choose initial
cluster centers, Nc-NA

FIGURE 6.10 Flow diagram for the ISODATA algorithm.

Assign 5-51- if |§-§£<l_=5-—5]1
i=1,...,N
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Discard S1
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ﬁompute )
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FIGURE 6.10 Continued,
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Yes
Stop - L=0

Compute Dij
=20z i=lyi. N -
ARNRETCS U

Dij
set KL =0

Continue

Yes

Retain L smallest Di](( &)

in ascending order

Lump
1
Z = ——(N,E N _Z, ]
Nifﬂjl ile i

FIGURE 6.10 Continued.
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ITER =ITER+1

FIGURE 6.10 Continued.

Specify the following specified process parameters:
M=2 0=4
n=1 L=0
g, = 1.5 [=4
In this case, N = 20 and » = 2. To start with, let N, = 1, with the initial
cluster center being z, = (0, 0)". Since there is only one cluster center,
Sl = [x‘., X2, [ ’XZO]

and N, = 20. Since N, > 7, no subsets are discarded.
Update the cluster centers:

7 = 1 3 x =(5.25,4.8)7
2 Xe§,
Compute I—Di:
_ 1
Di=—3% |x—2| =442

Nl xes,;

Compute D. In this case,

D=D, =442



Clustering Analysis and Unsupervised Learning 137

Since this is not the last iteration and N = M /2, find the standard deviation
vector:

T
o) = (0,,.0,)

g
o = Z(xu—zn) ]=3-59

XES]

Nl XES]
o, =(3.59,3.02) o, =3.59

- 1/2
G = Z(Xy —231) ] =3.02

Since 6y, > o, and N, = M /2, split z,. Since o, = a,,, split along the first
component of z; (let y = 0.6, Y0, ., = 2.15).

Z" = ((5.25+2.15),4.8)7 = (7.40,4.8)7
" =((5.25-2.15),4.8)" = (3.1,4.8)7
N =2

Computing the distance from each sample to the two cluster centers yields the
following sample sets:

S =[xy, X2, X3, X4, X5, X, X7, Xg]

82 = [Xg, X0, X1, X2, X13, X 14, Xq5. X6, X17, X3, Xj9, Xg]
N, =8

Ny = 12

Since both N, and N, are greater than #, no subsets are discarded.
Update the cluster centers:

z)=— ¥ x=(1.125,125)"
Nl XES,

= — 3 x =(8.00,7.17)
N2 xes$,

Compute D, and D,:

Ix —z;|=1.14
' legl l

X — 2] = 1.49
2T Nzng: 2
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Compute D:
- 1 N -
N 2N

This is an even-numbered iteration. Compute D,,:
DlZ = IZ] —_ Zzl =9.07

Since L =0, no action is taken. Since the requested number of clusters is
satisfied, and the distance between the clusters are large relative to the minimum
distance required, there is no need to change parameters.

Distribute the samples again to the two-cluster center according to distance
measure. The same results are obtained.

T
o, = (0. 031)

2

1/2
1

g = {ﬁ 3 (xy "211)2] =0.78
1

xe§,
O")l == 096
a, = (0.78.0.96)"

- 172
] 2
Ty = |+ 2 (= 213)
| 2 xe$, i
- | 172
2
T = | o Y (xy —z33) =0.8
ZXGS: B

o, =(1.47,0.8)7
Olmax = 0.96 < 0,
Oomax = 1.47 < 0y
N, > M/2; therefore, no splitting takes place.
The final results as shown in Figure 6.11 are
z, = (1.125,1.25)7
z, = (8.00,7.17)"
S1 = [x1, Xp, X3, X4 X5, Xg, X7, Xg]
S, =[x, X40, X11, X2, X3, X14» X153, X1, X17. X138, X19, Xpo]
Note that these results check with those obtained by the minimization-of-sum-of-
squared-distances method discussed in Section 6.3.1. But if the o is set at a small

value and M is set at higher value, say 3, then z, can be further split into two
clusters.
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FIGURE 6.11 Example of the ISODATA method.

6.3.3 Modification of the ISODATA Algorithm
(Without Human Intervention in Specifying
Certain Process Parameters)

As can be seen from Section 6.3.2, in using the ISODATA algorithm certain
process parameters have to be specified, such as the number of clusters desired,
the minimum acceptable standard deviation, and the minimum acceptable
distance between clusters. Knowledge of those parameters presumes that previous
studies have been done on the data. In addition, the performance of the algorithm
is highly dependent on the various parameters preset by the user. The “proper”
setting usually can be determined only by a trial-and-error method.

Davies and Bouldin (1979) suggested a clustering parameter which is to be
minimized to obtain natural partitions of the data sets, i.e, to obtain an optimum
number of cluster. The parameter they used is

D, + Dy
R; = D (6.39)

i
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where D, and D;; are defined as the dispersions for clusters / and j, respectively,
and Dj; is the dlstance between clusters / and j. It is obvious from the definitions

that 1f X[, X5, ..., Xy €S, the cluster domain, then
Dy(x, X3, ..., xy) 2 0 (6.40)
DXy, X5, ..., xyy=0 iff x; =x,Vx,x, €S, (6.41)

Some limitations on R to make it meaningful are:
(1) Ry(Dy. Dy, D) = 0
@) D4y ) = RD, Dy D)
(3) Ry(D;, Dy, Dy) = iff D; =D; =0
(4) If Dy = Dy, and Dy; < Dy. then Ry(Dy;, Dy, Dy) > Ry(Dy;, Dy Dyy)
(5) U Dy = Dy and Dj; > Dy, then Ri(D;;, Dy, Djj) > Ry(Dyy. Dy, Dy)
(6.42)

The first and second expressions indicate that the similarity function R is
nonnegative and possesses the property of symmetry. The third expression
implies that the similarity between clusters is zero if and only if their dispersions
equal zero.

The fourth and fifth expressions imply that if the interset distance between
clusters increases while their dispersions remain constant, the similarity of the
cluster decreases. On the contrary, if the interest distance remains constant, the
similarity of clusters increases when the dispersions increase.

To start with, the initial number of clusters can be chosen as a large
number; it can even be chosen as large as the number of patterns in a given data
set. By following the ISODATA algorithm as discussed in Section 6.3.2, we can
obtain the location of clusters as well as the pattern samples allocated to each
cluster for the number of clusters chosen. D;; and D;; can be computed according
to the definition as

-1 N, 1/2
D; = ﬁ”; |Xj —z;]

and

- 12
Dy = lela zlg]

where z;; is the kth component of cluster i. R;; can be computed according to
_D; + Dy

Ri' =
i D;
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Let N, be the number of clusters chosen. For a specific value of i, with
J=12....N,j#i there will be (N, — 1) R;’s, ot N. R;;’s (one of which is
R;;). Denote R; as the maximum one among these R;;, i.e.,

R, = max Rij
=12, N,

JFE

and R as the average of the similarity measures of each cluster with its most
similar cluster. R can then be computed as

_ 1 M
Different values of R will result for different value of N, (the number of clusters
chosen in the course of clustering computations). The number of clusters N,
corresponding to the smallest values of R seems to be the most appropriate
number of clusters. Unfortunately, there is no easy way to find the most
appropriate number of clusters analytically. Nevertheless, we can plot R for
different number of clusters chosen in the course of clustering computation versus
the number of clusters N,, and look for the appropriate number of clusters N, to
give the minimum value of R.

Figure 6.12a and ¢ show, respectively, a data set of 225 points for test, and
the performance of R for the smallest 20 values of N, chosen. R is minimal when
N, = 8 and about 5% greater than the minimum when N, = 9.

Figure 6.12b shows that the data points are grouped into seven clusters as
shown by the partitioning, and into eight as indicated by the additional dashed
line.

6.34 Dynamic Optimal Cluster Seeking Technique
(DYNOC)

The DYNOC is an algorithm suggested by Tou to circumvent the shortcomings
mentioned earlier. The main point of this algorithm is to introduce a performance
index

AN,) = M (6.47)

~ max{D;}
to determine the optimal clusters. Optimal clusters occur when the performance
index A(N,) reaches a peak, and NV, is optimal if A(N,) is a global maximum. The
maximization of this performance index can be inserted into any of the
algorithms, such as the maximum distance algorithm (the K-means algorithm)
and the ISODATA algorithm, immediately before splitting of a king size cluster
and/or merging of small clusters take place.
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FIGURE 6.12 Illustrative example for the modification of the ISODATA algorithm: (a) a
data set of 225 points; (b) clustering of the 225 points into seven or eight groups; ()R
versus N, plot.

6.3.5 Dynamic Clusters Method in Nonhierarchical
Clustering

In the methods discussed previously, the cluster center was represented by a
simple representative point. In this section we introduce another method, called
by Diday the dynamic clusters method, in which a cluster is represented by
several representative points called multicenters or sampling. A Q function 1s
used for determination of the centering. This algorithm can be stated briefly as
follows. Given M, the number of clusters, and N,, the number of pattern points in
E,i=12....,M, with S=(5,...,8) as the M-cluster domains of £ and
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= (Ey, ..., E);) as the M sampling of S. Clustering problem is then to find the
pair (E, S) that minimizes

AE,S) = ZD(E,, SH)=3 3 Y dx,2) (6.48)
1 xeS, z€E,
where £, C E,i=1,2,..., M, are called sampling or multiple centers or cores;

S;, i=1,2,... M, are cluster domains with the property §; NS; = @; D(E, §;) is
the “degree of similarity” of E; to S;; d(x, z), called the intraset distance, applies
not to a single cluster center, but to a multiple center to core as shown in Figure
6.13. S =(S5,,5,,...,Sy) is achieved such that S; are formed from the set of
elements x such that D(x, E(O)) < D(x, E( ). New samplings E can be defined
by the N, elements of £ which are closest to S; in the sense of a certain function
Q; that is, the N, elements of E are chosen such that the following function Q 1s
minimized:
D(x, E)

0= > D(x. £, (6.49)
The choice of the O function is important in this algorithm. With a good choice of
0, the convergence is generally achieved in about five iterations.

The advantage of this algorithm is that by using ; multiple centers instead
of only the center of gravity, the real form (may be the elongated form) would
have been obtainable. If only the center of gravity is used, the recognized form
would have been “rounded up.”

Use the same example as that used in previous sections to illustrate this
algorithm (see Figure 6.14).

1. Find S(O) and Sgo) by distance measure.

(0)
817 =[xy, X3, X3, X4, X5, Xg, X7, Xg]
S(O) _[
2 = [Xo, Xj0. Xp1, X124 X3, X4, Xy5, X6, X7, X5, X9, Xg0]
S
2
S
! D :
2
E
1

FIGURE 6.13 Multicenter representation of a cluster.
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FIGURE 6.14 Same example as in Figures 6.9 and 6.10 but with multicenter representa-
tion of a cluster.

2. From x% in SEO) and x’s in S5, find E(ll) and Eg” to minimize Q

E(1U = [x4, X7]

|
EY = [xy3, X;4]

3. Reassign the pattern points to get SE” and Sg”

(1)
S[ = [Xl, Xy, Xj3, X4, X5, Xg, X7, Xg]

() __
85 = [xXq, X105 X1, X12, X435 X145 Xy5, X16> X17, Xig, Xy0, X0l

4. Get the correct representation of sampling £, and E;.
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6.4 EVALUATION OF CLUSTERING RESULTS BY
VARIOUS ALGORITHMS

The principal difficulty in evaluating the results of the various clustering
algorithms is the inability to visualize the geometrical properties of a high-
dimensional space. However, there are some measures, such as distance between
cluster centers, that can be used as a tool for the valuation of the clustering
results.

From the numbers shown on Table 6.1, it can be seen that z; is significantly
remote from the other seven cluster centers. Clusters z;, z;, and z, are close
together, as are the clusters z, and z;, and z; and z;. The number of pattern
samples falling into the domain of each cluster is also an aid in interpreting the
results. For the example above, if the number of samples associated with the
cluster zg is numerous, we will certainly accept it as a cluster center. But when the
number of samples is small, cluster zg can be discarded without causing too many
discrepancies from the original data.

Another bit of useful information that can be used in the evaluation of
clustering is the variance of each cluster domain about its mean. Variances are
useful to infer the relative distribution of the samples in the domains. From the
component values of a variance along the coordinate axes, we can estimate the
tightness of the pattern points around the cluster as well as the shape of the cluster
domain. For the cluster z, shown in the variance table (Table 6.2) we can say that
it has a hyperspherical shape for its domain, since 62, i = 1, 2, 3, are almost the
same for each component. But for cluster z,, the shape of its cluster domain will
be somewhat elongated about the third coordinate axis,

The ratio of interset distance to intraset distance is another criterion for the
evaluation of clustering results. We definitely prefer a high performance value for
this ratio.

Other quantitative measures of the clustering properties can be the closest
and most distant points from the cluster center in each domain and the covariance

TABLE 6.1 Distances Between Cluster Centers

Cluster center zZ; Zy zZ; Z, Z5 Zs Z; Zy
v A 0.0 14.8 35 2.1 18.0 10.0 21.0 55.6
Zy 0.0 15.4 16.1 23.0 35 28.0 54.3
Z3 0.0 5.6 21.0 12.0 19.0 52.8
zZy 0.0 15.0 14.0 19.0 50.0
Z; 0.0 25.0 4.0 493
Zg 0.0 23.0 55.8
Z; 0.0 48.2

Zg 0.0
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TABLE 6.2 Variances of Various
Cluster Domains

Variance
Cluster domain o3 o} o3
2 1 08 07
2 18 15 1.0
z, 25 36 57
z, 25 38 195
z, a1 47 54
2 37 39 55

matrix of each sample set. Computational complexity and computer time are
other measures for comparison.

6.5 GRAPH THEORETICAL METHODS

The disadvantage of the approaches discussed so far is that the clustering results
are dependent on the presentation ordering of the pattern samples. One could
argue that the clusters might be determined more accurately if all the samples
were considered simultaneously. Graph theoretic approaches are suggested to
meet such requirements, but at a possible increase in computational time and also
at a substantial cost in rapid-access storage.

6.5.1 Similarity Matrix

The similarity matrix is such a matrix used to show the degree of similarity
between a variety of pattern points. Consider that matrix as an N x N symmetric
matrix whose elements are

1 d(x,,x,) <0 ..
Sif:{o d%x xj;>6 ij=12...,N (6.50)
1Ry

where d(x,, x,) is the intersample distance between pattern points x, and x,. § is
the threshold distance used to denote the similarity between the two pattern
points. In other words, s;; tells whether the pair of samples are closer than a
distance 0. 5;; are binary numbers chosen such that only one bit of storage is
required by d(x,, x,).
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= 14

FIGURE 6.15 Tllustrative example of 14 samples for similarity matrix studies.

Figure 6.15 shows a two-dimensional plot for a set of 14 samples. Its
corresponding similarity matrix drawn from the two-dimensional samples above
is shown below

1 23 45 6 7 8 9 10 11 12 13 14

1 111000000 O O 0 0 O
2 111000000 O O OC O O
3 1 11100O06O0O0C O O O O O
4 601110000 O 0O O O O
5 6o0oo011r1o000 0 0 0 0 0

§= 6 600011000 O O0O O O 0 0 =2

7 6 o0oo00O0O0OTI1T1TT1 0 0 0 0 O
8 06 00O0O0OO0OCTI 117 0 0 0 0 O
9 600000111 0 O 0 0 0
10 0 0000O0COOCOD 1 1T 0 0 O
11 060000O0O0OOO0OCOD 1 1 1 0 0
12 06000O00O0OO0OO0CO O 1 1 1 0
13 0 0000O0OO0COO O O0 1 1 0
14 0 0000O0OO0OCO0OO O 0 0 0 1

This similarity matrix can be used for clustering. The procedure is as follows:

1. Choose the row of S with the most I’s (the choice is arbitrary if there is
more than one such row), say row i

2. Form a cluster of x, and all x, corresponding to the I’s in row i
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Add x; to the cluster if 5, = 1; that is, if x, is already in the cluster and
d(x,,x;) < 0 (or sy = 1), then x, should also be in the cluster even if
s =0 [re, d(x;, x;) > 6.

Repeat step 1 until no new x’s can be added to the cluster.

Remove all columns and rows corresponding to x’s in the cluster to
form a reduced matrix.

Repeat steps 1 through 5 for the reduced matrices until no further
reductions are possible (i.e., no more clusters can be formed).

For our example, choose = 2.

1.
2.
34

34.

Choose row 1 with three I's in it.

[x,, x5, x3] form a cluster [s, = 5, =53 = 1].

Samples x;, X5, and x; are drawn into the cluster. Row 3 has a 1 in
column 4; therefore, x, is added to the cluster, resulting in the cluster
[x;, X, X5, x4]. By the same token, x5 and x, are also added to the
cluster, resulting in a cluster consisting of [x;], i=1,2,...,6.

The reduced matrix after removal of all columns and rows correspond-
ing to x’s in the cluster:

7 8 9 10 11 12 13 14
71111 0 0 0 0 O
8| 1 11 0 0 0 0 0
o] 111 0 0 0 0 O

S=10]l000 1 1 0 0 0
mn|{o0o0o0 1 1 1 0 0
21000 0 1 1 1 0
B3]/ 000 0 0 1 1 0
4,000 0 0 0 0 I

Choose row 7 with three 1’s in that row.

[x4, X3, Xo} form a cluster.

Since there are no 5 = 1 for j = 9, no ¥, is added to this cluster.
The reduced matrix after removal of all columns and rows correspond-
ing to x’s in the cluster:

10 11 12 13 14

o] 1t 1 0 0 0
11| 1 1 1 0 0
2| 0o 1 1 1 0

3] 0 0 1 1 0

4] 0 0 0 0 1
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1. Choose row 11 with three 1’ in that row.
2. [Xy0, X;1, X;5] form a cluster.
3-4. Since sy 3 = 1, X3 is added to the cluster according to procedure 3 as
stated above. The cluster then consists of [X;¢, X{;, X}2. X;3]-
5. The reduced matrix after removal of all columns and rows correspond-
ing to x’s in the cluster:

14
S” = 141

leaving [x,4] as the final cluster.

When € is chosen, clusters are defined by disjoint connected subgraphs of
the graph so defined. Obviously, the choice of the value of 6 is critical. Assume
for the example above that § = 4; then three clusters will be formed from the
same data set. When the € chosen becomes larger, say € = &, there will be only
one cluster (see Figure 6.16¢). If @ = 1, there will be 14 clusters with one pattern
point in each cluster,

Note that in this method there are a total of N? elements in S and
N(N — 1)/2 nonredundant elements (distances) in S. This may impose a severe
limitation on the number of pattern points that can be examined. If we have 1000
samples, these will generate about 500,000 interpoint distances.

6.5.2 SpanningTree Methods
Minimal SpanningTree Method

The minimal spanning tree method results from a graph analysis of arbitrary point
sets of data. Before our discussion on this method, let us introduce some terms
that should prove useful. Given a set G of points x,, i =1,2,...,N:

An edge is a connection between two points.

A path is a sequence of edges connecting two points.

A loop is a closed path.

A connected graph has one or more paths between any pair of points.

A tree 1s a connected graph with no closed loops.

A spanning tree is a tree that contains every point in G.

The weight of a tree is the sum of weights assigned to each edge in the

tree; for example, the weight equals the distance between two points at

the ends of the edge.

8. The minimal spanning tree (MST) is that spanning tree of minimal
weight (among all possible spanning trees of G).

9. The main diameter is that path of the MST containing the largest

number of points (formed by removing the branch points from the

minimal spanning tree).

NownaAwD -
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ib}

FIGURE 6.16 Effect of the choice of 6 on clustering: (a) 0 = 4, three clusters;
(b) 0 = 5, two clusters; (c) 8 =8, one cluster.

Figure 6.17 shows the minimal spanning tree and its original data. Because
the minimum spanning tree is unique to a set of points in terms of a minimum
total weight, it is possible to use the tree as a basis for cluster detection by
combining both distance properties and density properties.

Several main diameters can be drawn. Two of them are shown n Figures
6.18 and 6.19 with their edge weight plots. From the minimal spanning tree
shown in Figure 6.17 clusterings can be found by the nearest neighbor algorithm.



Clustering Analysis and Unsupervised Learning 151

{c)

FIGURE 6.16 Continued.

(a)

(b}

FIGURE 6.17 Minimal spanning tree: (a) original data; (b) minimal spanning trec.
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6.9
%6 4.0
1 11 1.2
2 3 4 9 10 11 12 14
* * *

(b)

FIGURE 6.18 One of the main diameters of the MST shown in Figure 6.17. {a) Main
diameter; (b) edge weight plot.

Removal of the longest edge, 12-14, produces a two-cluster grouping; further
removal of the next longest edge, 4-9, produces a three-cluster grouping; and
removal of all three long edges produces a four-cluster grouping. These
correspond to choosing breaks where maximum weights occur in the main-
diameter histogram.

Shared Near Neighbor Maximal SpanningTree for
Clustering

The method by Jarvis (1974) that we describe next is one that associates the
shared near neighbor rules with the spanning tree in a graph theoretic framework.
In this method the influence of other points in the set is taken into consideration
quantitatively on the relative similarity of each pair of pattern points. The idea
behind this shared near neighbor maximal spanning tree concept is to transform
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v 14

7.4

4.6

4.0

1.2 1.1 1.1 1.2 1.1

| |

6 5 4 9 10 11 12 13 14
* % *

(b)

FIGURE 6.19 One of the main diameters of the MST shown in Figure 6.17. (a) Main
diameter; (b) edge weight plot.

context-insensitive measures into ones that reflect an interaction of point place-
ment relationships in the relative vicinity of the candidate pair. In this method it is
presumed that pairs of points in the set are similar to the extent that they share the
same near neighbors provided that each is in the defined near neighborhood of the
other.

The procedure can be stated as follows:

1. List the k-nearest neighbors for each pattern point x;, i = 1,2,.... N,
shown in Figure 6.20 in order of closeness, as shown in Table 6.3. The
simplest euclidean distance measure can be used for this purpose. The
k-nearest neighbor N x (k + 1) matrix generated is. to be used in
subsequent processing.

2. Test for occurrence of the first entry of each row in the other rows of
the matrix to find pairs of rows for later processing (usually not more
than k rows can be found).
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X X X3 X4 X5 Xg
X7 Xs X9 X0 X1 X2
. . L] - L] L]
X3 X4 Xis5 X16 X7 X8
L) . - L[] L] »
X9 X20 X2) X X23 X24
L[] . 1 ] L] L] .
Xos X26 X2 Xasg X2y Xip

FIGURE 6.20 Simple data set used for illustration of the shared near neighbor maximal
spanning tree method.

TABLE 6.3 N x (k + 1) Nearest Neighbor Integer Matrix for the Simple N-Point
Data Set Shown in Figure 6.20

Point 0 1 2 3 4 5 6 7 8
Xg Xg Xy Xg X4 X7 X3 X15 X3 X
Xy Xg X3 X110 Xi5 Xg X4 X16 X4 Xg
X10 X0 X4 X1 X6 Xg X5 X7 X5 X3
n X X5 X2 X7 X1p Xg X8 X1 Xy
X14 X4 X3 X15 X2p X3 Xg Xa1 X9 X7
X5 X5 Xg Xi6 X9 X4 X10 Xa2 Xap X3
X16 X)5 X319 X7 Xa2 X5 X1 X23 Xoy Xg
X7 Xy7 X11 X158 Xo3 Xi6 X12 X24 X2 X10
X320 Xo0 X4 X21 Xog X19 X5 Xa7 Xos Xy3
Xg} X21 X15 Xy Xg7 X290 X5 Xa4 Xag X14
X92 X292 X16 X23 Xog X2, X7 X39 X7 X15

X9z Xo3 X17 X4 Xgg Xo9 X138 X30 Xg8 X6




Clustering Analysis and Unsupervised Learning 155

3. Count the number of index matches between the two rows. If the
number of matches exceeds £, (a threshold number to be set), the two
points indexed in the first column of the two rows are said to be in the
same cluster.

Use the match count as a similarity index (see Table 6.4) to develop single-
link and MST-like structures against orderings of this new measure. As the near-
neighbor sharing number in this case is a similarity measure (not a distance
measure), the structure is a maximum spanning tree. Use absolute thresholds to
cut edges in the maximal spanning tree and define the resulting cluster properties
in the single linkage context.

Figure 6.21 shows another example, consisting of a point set and its
corresponding euclidean metric minimal spanning tree and the shared near
neighbor maximal spanning tree for k, = 10. The links with the smallest sharing
number are marked “I,” those with the next smallest are marked “II,” and so on
up to “IV.” These markings indicate how a hierarchy of clusters would form.

GraphTheoretic Clustering Based on Limited
Neighborhood Sets

Most of the approaches discussed previously were based on distance measure,
which is effective in many applications. But difficulties would occur if this simple
distance measure were employed for the clustering of certain types of data sets,
such as those with a change in point density, those with a neck between
subclusters, and those with chained clusters within the set, as shown in Figure

6.22a, b, and c, respectively, where it is not difficult to identify the clusters
visually.

TABLE 6.4 Index Match Count Between Rows 1n Table 6.3°

Point Xg X9 X0 n X1 X15 Xi6 X7 X20 i Xy Xay
Xg 8

Xg 6 8

Xipn 3 6 8

Xq 0 3 6 8

X14 6 4 2 0 8

X5 4 6 4 2 6 8

X1 2 4 6 4 3 6 8

X7 0 2 4 6 0 3 6 8

Xog 3 2 1 0 6 4 2 0 8

Xo 2 3 2 1 4 6 4 2 6 8

O 1 2 3 2 2 4 6 4 3 6 8

X23 0 1 2 3 0 2 4 6 0 3 6 8

“Boundary points are not included.
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FIGURE 6.21 Another example: (a) a point set and (b) its shared near neighbor maximal
spanning tree for &, = 10.

The method discussed in this section is designated primarily for such
problems. It is based on the limited neighborhood concept, which originated from
the visual perceptual model of clusters.

Several definitions are useful for illustrating this method. Let

y=[SI,S2,...,SM] and ‘%:{RlvRZ""’RM]

where S, and R, I =1,2,... M, represent, respectively, the graphs and the
regions of influence; (p;, p;) represents a graph edge joining points p; and p;.
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{a) (b)

(e}

FIGURE 6.22 Examples of some special types of data sets: (a) with change in point
density; (b) with a neck between subclusters; {c) with chain clusters.

To illustrate the region of influence, two graphs should be defined: the Gabriel
graph and the relative neighborhood graph.

The Gabriel graph (GG) is defined in terms of circular regions. Line
segment (p;, p;) is included as an edge of the GG if no other point p; lies within
or on the boundary of the circle with (p;. p;) as the diameter, as shown in Figure
6.23a,

Similarly, the relative neighborhood graph (RNG}) is defined in terms of a
lune region. Line segment (p;, p;) is included as an edge of the RNG if no other
point p; lies within or on the boundary of the line, with p; and p; as the two points
on the circular arcs of the Lunes, S; and R; can then be defined as

(pip)) €5 iff py € Ri(pi. p))
VeE=1,2,....mk#i#j (6.51)

R(p;, py) = (x: fld(x, p), d(x, p))] < d(p;, pj); i # J} (6.52)
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i
Py
Y pj
h|
(a) {b)

FIGURE 6.23 Definitions for a Gabriel graph and relative neighborhood graph. (a)
Circular region defined by GG; (b} lune region defined by RNG.

From the two definitions above it can be seen that §; defines a limited
neighbothood set. If max[d(x, p;), d(x, p;)] is chosen for the function f[d(x, p,),
d(x, p;)] in Eq. (6.52) [i.e, we find the maximum between d(x, p;) and d(x, p))
and use it for the / function], we obtain

Rena(pi py) = {x - max[d(x, py), d(x, p))] < d(p;, p).i+#j} (6.53)
where Rgng(pi, pj) represents the RNG region of influence. When

d*(x,p;) + d*(x.p))
is used for

fld(x, p), d(x, p))]

we have

Re6(pipj) = {X5d2(xapi) + dz("’Pj) = dz(Pi,Pj)s i #j} (6.54)

where Rs(p;, p;) represents the GG region of influence.

The definition of R, will determine the property of S;. If R; € Ry, the
edges of S; will be nonintersecting. But if R; D Rgg, intersecting edges are
allowed. Take an example to illustrate this. Assume that we have regions of
influence such as the following:

R\ (pi,pj» B) = Roe(pinp)) Y {x: B minld(x, p;}, d(x, p))] < d(p;.p;). 1 #J}
Ry(p;. pj» B) = Rpng (i, pj) Y {x: B minld(x, p,), d(x, p))] < d(pi, p)). i # ]}
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where 0 < f < 1 is a factor of relative edge consistency. Thus S,(f) is obtained
from the GG by removing edges (p;, p;) if
d(pi. p;)
min{d(p;, p,). d(p;. py)]

> p

where p, (s p;) denotes the nearest Gabriel neighbor to p; and p, (# p;) denotes
the nearest Gabriel neighbor to p;.

It is then clear that varying S would control the fragmentation of the data
set and hence would give a sequence of nested clusterings. Increasing f would
break the data set into a greater number of smaller clusters. The examples of two-

(b)

le)

FIGURE 6.24 Sct of two-dimensional dot patterns to illustrate a graph theoretic
clustering algorithm based on limited neighborhood sets. (a) Data set; (b) one cluster;
(c) six clusters.
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FIGURE 6.25 Set of two-dimensional dot patterns to illustrate a graph theoretic
clustering algorithm based on limited neighborhood sets.
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FIGURE 6.26 Set of two-dimensional dot patterns to illustrate a graph theoretic
clustering algorithm based on limited neighborhood sets.
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dimensional dot patterns shown in Figures 6.24 to 6.26 demonstrate the effec-
tiveness of this clustering method. See Urquhart (1982) for supplementary
reading.

6.6 MIXTURE STATISTICS AND UNSUPERVISED
LEARNING

Consider a probability density function that is a mixture of other probability
functions. This probability function can then be expressed as

M
px) = gp(wi)p(xlwf) (6.55)
oF
le(w,-) =1 (6.56)
plw)=0  Vii=12,....M (6.57)

where p(x|w;) is the likelihood function of w, as defined previously and can be
interpreted as the probability of x given that the state of nature 1s w;. p(w;)
denotes the a priori probability of x falling in subset S;, which is later classified as
;. P(x) can then be interpreted as the probability of the unknown pattern
samples expressed in terms of the statistics of the natural clusters of those
samples. If

pxlo)p(xlw) =0 Vx,j#i (6.58)

that is, little overlap (or nearly no overlap) exists between clusters, then Eq. (6.55)
becomes approximately

px) =plw)p(xlw;)  if x €5, (6.59)
where
S; = {x] p(w;) p(x|w;) = p(w,) p(x|w)), v/}

If the overlap is not too great among the component density functions of the
mixture, there will exist a one-to-one correspondence between the modes (or local
maximums) of the mixture and the individual component class density functions,
as shown in Figure 6.27.

The clustering problem is now to locate the modes (or local maximums) of
the probability density p(x), and further to represent each mode by p(x|w;),
i=1,2,...; that is, we are to learn the distribution of x without supervision.
Locations of these modes in p(x) might be used for the center-distance definition
of clusters.

Several procedures can be used in the multimodal search. Random search is
one procedure, gradient search is another. But if the statistics of each class and the



162 Chapter 6

FIGURE 6.27 Composite probability density function.

number of classes are not all known, we must search for some other procedure to
use for this problem.

For simplicity, the normal distribution of » dimensions with zero mean is
assumed for p(x), or

p(x) p(—ix'C'x) (6.60)

1
= ——Fp——75 X
(2n)n/2|C|]/2

Since C~! is real and symmetric, Eq. (6.60) can be diagonalized by an orthogonal
transformation by choosing eigenvectors of C~! as the new basis vector { so that

X =10y and xI'Clx =yl Ay (6.61)
where
A 0
Ay
A =
0 Ay
and 4, i=1,2,...,n, are the eigenvalues of C~!. The distribution becomes

ply) = xp(—1y’ Ay) (6.62)

1
_
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The probability for a pattern to fall within the characteristic domain D of this
density function is then given by

ply € D) exp(—1y" Ay) dy (6.63)

)
where D is the interior of the quadric surface defined by
y' Ay =1 (6.64)

whose center is at the origin and whose principal axes have the same directions as
the eigenvectors of C~!. Let

VA 0

0 A
Equation (6.63) can be further reduced to

____]—[L] v L exp(—3

p(y € D) = 12'2) dz = const. = o (6.65)

- (27[)"/2|C|l/2

where ¢, the region over which the integral operates, is the circle of unit radius
defined by

n
Z'z=1 and |C"*=]]V4A (6.66)
=1

Equation (6.59) becomes
p(x) = op(w;) (6.67)

Then we have

plw,y) _ p{w,) — ploy) (6.68)
p(xe D)) pxeD) p(x € Dy) '
and
M
i;P(wi) =1 (6.69)
IfN,i=1,2,..., represents the number of patterns falling in the modal

domain D;, then the probability p(x € D,) can be estimated from N,/N, where N



164 Chapter 6

is the number of patterns used for the test and Eq. (6.68) becomes

P _plw)) _ ploy)
N N, T Ny
M

Z;P(wi)=1

The problem remaining to be solved is how to locate the modes. The
geometrical properties of the modal domain with multivariate gaussian density
function have been studied. Analysis of the variations of the mean value of the
function p(x) within a suitable domain can be used to determine the local
convexity of the function p(x), at point x. See Postaire and Vasseur (1981) for
more detailed description of this technique.

6.7 CONCLUDING REMARKS

Clustering, which is a very powerful tool in data classification, is an unsupervised
approach. Compared to the supervised approach, this approach is less restricted
subjectively by prior knowledge. Approximate application of this natural cluster-
ing sometimes produces unexpected inspiration and innovation.

Clustering can be used for training, classification, and mode location as
well as for learning. The importance of this approach to classification is
considerable. Much has been achieved recently using this line of approach.

It is worthwhile to mention here that the contrast and distinctness of an
image can be greatly improved through the use of clustering. More details on this
method are given in our discussion of image enhancement by clustering in
Chapter 12.

PROBLEMS
6.1 Consider the following samples:
x; = (6,0) xg =(—7,6) X7 =(9,0)
x;=(—4.-5)  x,3=(7,0) x;3 =(=7.-5)

X; = (—4, 6) X = (—5, 8) X9 = (—8. 7)
X4 =(—6,6) X3 = (-5, -6) Xy = (7. —1)
X5 = (‘_7, '—4) X3 = (—6, 9) le = (—6, _6)

Xe = (7, l) X4 = (—6, —'7) Xy = (—7, 8)
X; = —5, —4) X5 = (8, —l) X23 = (—5, 7)
xs = (9. 1) X6 = (=7, —6) X4 = (8, 2)

Determine the cluster centers by means of minimization-of-sum-of-
squared-distances algorithm. Arbitrarily choose 2z;(0) = (8, 8),
z)(0) = (-8, —8), and z3(0) = (8. 8).
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6.2

6.3

6.4

6.5

6.6

Repeat Problem 6.1 using the following pattern samples:

x; =(0,0) xg =(2,2) x5 =(7,7)
X, = (1,0) xg = (8.5) X6 =(8,7)
x3; = (0, 1) Xjp = (6, 6) X7 =(7,8)
x, = (1, 1) x; =(7,.9) X3 =(8.8)
xs =(2,1) xp; = (8,0) Xi9 = (9, 8)
xe = (3,1) X3 =1(9,6) X590 = (8,9)
x; =(0,2) X134 =(6,7)

165

Two classes are assumed and the cluster centers can be chosen

arbitrarily.

Repeat Problem 6.2 using the ISODATA algorithm. Start the proce-
dure with one cluster center.

Repeat Problem 6.1 with the pattern samples shown in Figure P6 4.

012345678310 12 14 16 18 20 22 24 26 28
[e 2
1! L]
21 [ L] °
3 »
4 ! [ ] “* "
9 » * * -
6 * L4
7 Lg *
B “ [ ] [ ] *
9 ! * * »
10 * [}
11 [} * [}
12 1
13 ¢ L]
14 L] *

Figure P6.4

Repeat Problem 6.4 using the ISODATA algorithm. Start the process
with one cluster center.

Use k-nearest neighbor approach to cluster the following set of data:

(3, 4); (5, 5); (7, T, (3, 7); (6, 10); (3, 11); (6, 12); (8, 9); (9, 5);
(9, 12); (10, 14); (11, 8); (12, 11); (13, 5); (14, 9); (15, 7); (17, 7):
(19, 5); (19, 10); (20, 7); (21, 4); (22, 12); (22, 9); (22, 2); (24, 5):
(25, 7); (25, 12); (25, 10); (25. 1); (26, 3); (28,10); (29, 7); (28, 4);
(1, =4); 3, =2); (6, —=2); (12, =2); (10, =3); (10, =5); (10, =7);
(11, =%); (13, —.6); (13, —4); (8, —6); (8, —9); (7, —3); (8, —4);
(79 _5); (7’ _7)a (25 _6)’ (43 _3)s (3a _8)3 (53 —~8), (Sa _5); (69 _5);
(5, —4); (6, —4); (3, —4); (3, —6); (4, =3); (6, —3); (5, —6); (15, —2);

(15, =5); (15, =7, (14, —8); (14, —10); (18, —10); (16, —9);

(16, =7); (16, —6); 16, —4); (17, —1); (18, =3); (18, =5); (18, =7);
(18, —6); (19, —6); (18, —8); (20, —9); (21, —10); (21, =7); (19, —4);
(22, —4); (24, -2).



166

6.7

6.8

6.9

Chapter 6

Choose & = 5, and plot your result to show the clusters. Suggestion:
Write a program in C or use Matlab to work out this problem.

Apply K mean method together with DYNOC (Dynamic Optimum
Cluster seeking technique) to cluster the following set of data into an
optimum number of clusters:

0, 0), (1, 0), 3, 7); (3, 12); (4, 14); (4, 16); (5, 6); (5, 9); (6, 12);
(6, 17); (7, 5); (7, 14); (8, 10); (8, 12); (8, 17); (5, 7); (10, 13);
(10, 16); (11, 5); (12, 8); (12, 15); (13, 12); (13, 19); (15, 7); (15, 13);
(19, 7); (19,11); (19, 16); (19, 18); (20, 5); (20, 11); (21, 6); (21, 8);
@1, 10); (21, 17); (22, 6); (22, 16Y; (23, 19); (24, 17); (25, 16);
(25, 19); (26, 5); (26, 7; (26, 18); (27, 12); (27, 17); (27, 19); (28, 3);
(28, 7); (28, 9); (28, 11); (28, 18); (30, 6); (30, 10); (30, 12); (30, 13);
(1, 3); 31, 8); (32, S); (32,11); (32, 13): (34, 6); ((34, 11).

(a) Write a program to group these data into clusters.
(b) Try K (or N,) equal to 3, 4, 5, and 6.
(c) Plot A(N,) versus N,.

. min[D,]
o=t

(d) Find the optimum number of clusters and plot them.

Suggestion: Write a program or use Matlab to work out this problem.

Repeat the previous problem by applying ISODATA together with
DYNOC.

Use the minimum spanning tree approach to cluster the following
data:

(1,6) X
x; = (7.6) X9
x; = (10,7) Xo0
X, = (llvé) X2y
xs = (12, 6) X2

(2,4) X35 = (11.3)
(3,4) X3, = (12,3)
(5,4) X35 =(13,3)
6,4) Xy = (14,3)
(7»4) X390 = (0! 2)
x, = (13,6) X;; = (10, 4) Xq =1(3,2)
x; = (14, 6) X =(11,4) x4, =(52)
xg =(1,5) X55 = (12, 4) x4 =(7,2)
X, =(3,9) Xy = (14, 4) X4 = (10,2)
X0 =(4,5) Xy = (15, 4) X4 = (11,2)
x;; =(6,9) Xo5 = (16,4) X4 = (14,2)
X; = (10, 5) Xy = (1, 3) X4 =4, 1)

l||

III
i

x;3 =(11,5) X3 = (2,3) X457 = (6, 1)
x4 = (12,5) X3 = (4,3) X =11, 1)
x5 =(13,5) xn =(6,3) X = (12, 1)
X = (14.5) x;; = (8,3) Xsp = (13,0)
x;; =(15,5) X33 =(9,3)
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{a) How many clusters result?
(b) List the connections that define the main diameter.

6.10 A set of two-dimensional dot patterns is shown in Figure P6.10. Use
the Gabriel graph (GG) method to do the clustering.
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Figure P6.10

6.11 Use the Gabriel graph method to cluster the dot patterns given in
Figure P6.11.
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Dimensionality Reduction and
Feature Selection

71 OPTIMAL NUMBER OF FEATURES IN
CLASSIFICATION OF MULTIVARIATE
GAUSSIAN DATA

The pattern space is usually of high dimensionality. The objective of the feature
selection is to reduce the dimensionality of the measurement space to a space
suitable for the application of pattern classification algorithms. During this
process of feature selection, only the salient features necessary for the recognition
process are retained so that classification can be implemented on a vastly reduced
feature space. Much work has been done in finding the dependences of the
probability of misclassification on the dimensionality of the feature vector, the
number of training samples, and the true parameters of the class-conditional
densities.

As discussed in Chapter 5, for a two-class problem with p(w,) = p(w,),
C, =C, =C, and all parameters, including m; and m,, being known, the
minimum classification error occurs when a pattern sample x is classified such
that

xew, whenx"C'(m, —my) —i(m, +my) C'(m, —m,) >0
X € 0, otherwise
(7.1)

168
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But in the case when the parameters are not known, the mean vectors m; and m,
and the estimate of the covariance matrix have to be computed from the training
samples N,, from class w;, i =1,2.

Unfortunately, evaluation of these quantities is not easy. Various approx-
imations to this statistic have been developed, but they are still very complex in
their mathematical forms. Nevertheless, the dependences of the average prob-
ability of misclassification on the Mahalanobis distance *, the number of
samples per class N, and the number of features p are obtained. In general, for
a given p, an increase in the values of r* and/or N decreases the average error
rate. Jain and Walter (1978) have derived an expression for the minimal increase
in the Mahalanobis distance needed to keep the misclassification rate unchanged
when a new feature is added to the original set of p features:

2
rppy =1, =0r, = W3 (72)
where rf, and rf, +1 represent, respectively, the Mahalanobis distances produced by
the p and p + 1 features. Equation (7.2) shows that the minimal increase is a
fraction of rﬁ and that this fraction increases with p and decreases with N, the
sample size. The problem of determining the optimal number of features for a
given sample size now becomes to find when the contribution of an additional
feature to the accumulated Mahalanobis distance is below a threshold. Let the
contribution of the ith feature to the Mahalanobis distance be d;"; then we have

A=Y dl 73)
1=1

Assume that the features do not have the same power of discrimination and that
the contribution of each feature is a fixed fraction of that of the previous feature,
such that

d=¢&_,  i=2..p (1.4)

where ¢ is a positive arbitrary constant and less than [. Substitution of Eq. (6.4) in
Eq. (6.3) yields

rp=di+ &+ o+ ]
1= &% (7.5)

where d7 is the Mahalanobis distance computed with only the first feature. Since
¢ < 1, it implies that the features are arranged in a best-to-worst order. We can
then determine the smallest set of features by comparing it with the threshold to
maximize the classifier’s performance.
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7.2 FEATURE ORDERING BY MEANS OF
CLUSTERING TRANSFORMATION

As discussed in Section 7.1, features chosen for classification are usually not of
the same significance. Decreasing weights assigned to measurements with
decreasing significance can be realized through a linear transformation (Tou
and Gonzalez, 1974). Let the transformation matrix used for this purpose be a
diagonal matriX, or

0 when j # k

wy whenj =k

w=(wy)  owy = (7.6)
where wy, j=1,...,n, represents the feature-weighting coefficients. Our
problem now is to determine the coefficients w;; so that a good clustering can
be obtained. Under such circumstances, the intraset distance between pattern
points in a set is minimized. The intraset distance D? for pattern points after
transformation has already been derived, as shown by Eq. (6.19), which is
repeated here with the weighting coefficients added:

= ZZ( Wi j (7.7)

where af is the sample variance of the components along the x, coordinate

direction. The Lagrange multiplier can be used for minimization of the intraset
distance. Two different constraints can be considered.

Constraint 1. When the constraint is Z _, Wy = 1, the minimization of
D? is equivalent to the minimization of

n
=2 Z( W j - p ( X} W — 1) (7.8)
j:
Take the partial derivative of § with respect to w;; and equating it to zero, we have
Wi g8 (7.9)

Similarly, taking the partial derivative of § with respect to the Lagrange multiplier
p, and equating it to zero yields

w1 (7.10)

Y=l (7.11)
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or

4
Pr == 2 (7.12)
Z =1 Uj ?
Substitution of Eq. (7.12) back into Eq. (7.9) gives the feature weighting
coefficients

1

N 7.13
g 612 ;=101_2 7-1)

From Eq. (7.13) it can be seen that the value under the summation sign in the
denominator is the same for all wy, j=1,...,n, and therefore, w; varies
inversely with ajz.

_ Constraint 2. When the constraint is []"_, w; = 1, the minimization of
D? is equivalent to the minimization of

n n
S = 2]§(wﬂ-aj)2 —_ p2(j1:[l Wy — 1) (7.14)
Taking the partial derivative of S with respect to w;; and equating it to zero yields

4wyl = p, ]‘]w,d =0 (7.15)

k#r

Multiplying both sides by w;, we have

k=1
Substitution of ]_[J'.’Zl w; = 1 into Eq. (7.16) gives
4wfj0f‘ —p,=0 (7.17)
or
Nz
Jj
Similarly,
as n
—=J]w;,—-1=90 7.19a
sz j];Il . ( )
or
[Tw; =1 {7.19b)
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which satisfies the given constraint. Substituting Eq. (7.18) into Eq. (7.19b) yields

P
=1
;Ul 2, (7.20)
or
(Pz)nlz
= (7.21)
A |
After simplification, we obtain
. 2/n
j:

Combining Eqgs. (7.18) and (7.22) yields

L/n
1 n
Wy = — ( 2 Gj) (7.23)

j=1

Note that the continual product inside the parentheses is the same for all wy,
Jj=1,...,n, and therefore, w; varies inversely with o,.

Although the results obtained are somewhat different for different
constraints on wj, the guides for choosing the feature-weighting coefficients
are the same for both cases. That is, a small weight is to be assigned to a feature
of large variation, whereas a feature with a small standard deviation ¢, will be
weighted heavily. A feature with a small standard deviation ¢, implies that it is
more reliable. It is desirable that the more reliable features be more heavily
weighted.

7.3 CANONICAL ANALYSIS AND ITS
APPLICATIONS TO REMOTE SENSING
PROBLEMS

7.3.1 Principal Component Analysis for
Dimensionality Reduction

In previous sections we have discussed attempts to perform object classification
in high-dimensional spaces. We have also mentioned that improvements can be
achieved by mapping the data in pattern space into a feature space. Feature space
is of a much lower dimensionality, yet it still preserves most of the intrinsic
information. On this basis let us go to the technique of canonical analysis (or the
principal component analysis).
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The objective of the canonical analysis (or principal component analysis) is
to derive a linear transformation that will emphasize the difference among the
pattern samples belonging to different categories. In other words, the principal
component analysis is to define new coordinate axes in directions of high
information content useful for classification purposes.

For multispectral remote sensing applications, each observation will be
represented as an #-component vector,

x,»j]

Xij = | Yk (7.24)

X

ijn

where n represents the dimensionality of the observation vector x;;, or the number
of channels used for the observation. x;; represents the observation (or the
intensity of picture element) in the kth channel for picture element j in scan line /.
Let m; and C, denote, respectively, the sample mean vector and the covariance
matrix for the /th category (! =1.2....,M). These two quantitics can be
obtained from the training set.

Our problem now is to find a transformation matrix,, By means of this
transformation, two results are expected. First, the #-dimensional observation
vector x will be transformed into a new vector y with a dimensionality p which is
less than #n; or

Yy = AX; (7.25)
where A is a p x n transformation matrix and y; will be represented as

Yij

Yi = ik (7.26)

Yipp

Second, the transformation matrix A is chosen such that ACA” will be a diagonal
matrix whose diagonal elements are the variances of the transformed variables
and are arranged in descending order. The transformed variables with the largest
values can be assumed to have the greatest discriminatory power, since they show
the greatest spread (variance) among categories,
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The matrix 4 mentioned above is the covariance of the means of the
categories (referred to as the among-categories covariance matrix) and represents
the spread in n-dimensional space among the categories. It can be defined as

1
C = XNXT — —7— (Xn)(Xn)” (7.27)
=11

where n,, is the number of observations for category /; M is the number of
categories, and X is defined as an » x M matrix of all the category means

composed of all means vectors m, k =1.2,... M as
cat. 1 cat.2 ... cat M
ch. 1 my My, e My
X = [Iil] . ﬁlz, ey ﬁ]M] =ch. 2 ny Mmsy o Moy (728)
ch. n m, My o My

The N and n in Eq. (7.27) are, respectively, an M x M matrix and an M x |
vector of the number of observations in the categories as

n; 0
n;

N = : (7.29)

0 1y
and

m

. ”:2 (7.30)
i

Let W be the combined covariance matrix for all the categories (referred to as the
within-categories covariance matrix), which can be computed as

_ Zﬁl(nl — 1)&!
Zﬁl n—M

where é‘, is the covariance matrix for category /. , is the number of observations
for category /, and M is the number of categories.

W (7.31)
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The matrix C can be made to be unique only if the following constramt is
placed on it:

AWAT =1 (7.32)
where I is a p x p identity matrix. Let a new matrix #'/? be such defined that

wirw'hH = w (7.33)
and

w2 = (wy! (7.34)

where (W1/2)7! is the inverse of W!/2, Then
ACAT = AW\ 2=V o=\ (W) 4T
= @w"Hyw e w2yt (7.35)
and Eq. (7.32) becomes
AWAT =1 = (AW YWY AT = (AW ) aw BT

or

FFT =1 (7.36)
if CW'/2 is replaced by F. Equation (7.35) then becomes

ACAT = FVFT = A (7.37)

where ¥ is used to substitute for W='"2C(W~"/%)" in Eq. (7.35). Our problem
now becomes one of finding F to diagonalize matrix V" subject to the constraint
FFT =1 Before we can do this, we must first find W!/2. Let us construct
matrices D and E such that

W = EDET (7.38)
and
EET =1 (7.39)

where D is a diagonal matrix whose diagonal elements are the eigenvalues of W,
and E is the matrix whose columns are the normalized eigenvectors of W. Then
we have

w2 = ED'?ET (7.40)
and
w112 — gp-\12gT

where D'/? is defined as a diagonal matrix whose diagonal elements are the
square roots of the corresponding elements in D, and D~!/2 is similarly defined.
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Once W'/ has been computed, ¥ = W~Y2C(W~-"2)T may be deter-
mined. Then the problem becomes one of finding A and F from Eq. (7.37)
subject to the constraint of Eq. (7.36). That is, A is the diagonal matrix of
eigenvalues of ¥, and F is the matrix whose rows are the corresponding
normalized eigenvectors. The matrices are then as follows:

A 0
As | 0
|
|
A=, ip: (7.41a)
e
!
0 | A
and
F=[fi./ ... f] (7.41b)

Only the p x p submatrix A* of A contains the distinguishable eigenvalues such
that

A 0
A* = (7.42)
0 A
with 4,,| =--- = 4, = 0. This will be used as a discriminant space. In a similar

manner, F is partitioned as
F*=[f.h. . L] (7.43)

As a result of this partitioning, the transformation matrix 4 becomes A*, such
that

A* = Fxp~1/2 (7.44)

which is now an p x n matrix.

The mathematics derived in previous paragraphs tells us that #-dimensional
observations x (X = [x;,x,, ..., x,]) can be transformed into a new vector y
(y=Dn.»,--.,»,]} with a dimensionality p which is less than ». It also tells us
that a diagonal matrix A could be found whose elements are eigenvalues of V,
and a matrix F whose rows are the corresponding normalized eigenvectors.
The relative importance of these eigenvectors (1.e., the ones with the higher
discriminating power) could be determined from the relative values of their
eigenvalues. Put in other words, we can find a coordinate axis that contains the
highest amount of information. All these will help us in the design of a good
classification system.
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X,
Y2
Yy

A A‘ A
AA‘ A< AAL

A A A

A AAA

A A
o X,

FIGURE 7.1 A two-dimensional pattern space with principal component axes.

Figure 7.1 shows data plotted in a two-dimensional pattern space. This data
comes from NASA agricultural application. Although x; and x, are the two
features best selected to represent the objects for this particular application, most
of the information is still not on the x, axis, nor on the x, axis, but on a line y, -
with inclination « with the x, axis. This line with the maximum information
content is the so-called first principal component axis, while the line y,, which 1s
perpendicular to y,, containing the least amount of information is called the /east
principal component axis.

Figure 7.2 shows an example of a two-class problem (w, and w,). From the
distribution of the pattern samples shown in the figure, neither the x; axis nor the
x, axis can effectively discriminate these pattern points from one another. But
when we project the distributions onto y, as shown, the error probability will be
reduced. It is much smaller than that when the data are projected either on the x;
or the x, axis. According to the discussion given above, y, will be ranked as the
first component axis by its ability to distinguish class @, from w,. Data analysis
through projection of the pattern data on the first and second principal component
axes is very effective in dealing with highs dimensional data sets. Therefore,
approach of principal component axes is highly preferred for the optimum design
of a linear classifier.

X
Y2 2 w1
my
e L
m> Y1
S W X
1

FIGURE 7.2 Selection of the first principal component axis classifier design.
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7.3.2 Procedure for Finding the Principal
Component Axes

How many principal components are sufficient for a classification problem
depends on the problem in discussion. Sometimes the number of components
is fixed a priori, as in the case of situations requiring visualization of feature space
with limitations imposed due to two- or three-dimensional space requirements. In
some other situations, we can set up a threshold value to drop out those principal
components when their associated eigenvalues / are less than the threshold.

Figure 7.3 shows a coordinate system (x|, x,). Choose a basis vector such
that these vectors point in the direction of maximum variance of the data, say
{(y1,¥2). P(x,, x,) is a data point in the (x|, x,) coordinate system, and can also be
expressed as P(y;, y,). We then have

¥y =x,cosf + x,sind

i (7.45)
¥y = —x; sin 0 + x, cos 6
or
vi{_| cos8 sinb [|x 7 46
Vs ~sinfl cosf||x, (7.:46)
in matrix form:
y = Ax (7.47)
where
cos sinf
= 7.48
—sinf) cos® ( )
XoA
y2 Xy P(xbe)
17_5"“9
1\5\(\9
Y2
X2 Y
o Y\/
] Xt

FIGURE 7.3 Example showing the relation between two coordinate systems.
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Given x, we can compute C,. With A and C, we can then compute C, such that
C, = AC,A’ (7.49)

When rows of A are eigenvectors of C,, then C, should be in diagonal matrix
form. Thus, we can find the line that will point in the direction of maximum
variance of the data. Let us transpose the matrix A

cosf) —sinf
sin @ cos 0

T

=le; e (7.50)

Since e, and e, are eigenvectors of C,, we then have

Cxez = /lzez (752)
where 4, and 4, are eigenvalues. Then
CAT =|Ce, Ciey = |hre, 4re, (7.53)
and
T cos8 sind || 4 cosf —4i,sind
C, =ACA") = : : :
| —sin0 cos8||A;sin0  4,cos0
fo 0 (7.54)
0 A '

Both [cos @ sin8)]” and [—sin® cos )" are eigenvectors of C.. Which one will
be accepted as a good eigenvector (or a good principal component) will depend
on the value of @ (or depend on the distribution of the pattern points). This seems
clear, because 0 is determined by C,, which, in turn, is determined by C,, and C,
is computed from the set of pattern points. A threshold value can then be set up to
select those principal components with their associated eigenvalues (4A’s) greater
than the threshold.

Example. Let us use a numerical example to close this section. Given that
the following pattern points belong to class w,:

=01 1y =02 10 2= 15 =010 18
K=018 197 x¥=18 1) =015 6 =010 2)7
and that the following pattern points belong to class w,:
(=17 =17 =16 -7 xHB=(=13 -3)
=7 -1 L=-1 - X=@© -8
(-3 —13) B=(=7 —16)
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our problem is to find the new coordinate axis so that it is along the direction of
the highest information content. m; and m,, mean vectors of patterns belonging
to w, and w,, are, respectively,

m =11 D' +@ 1007 +@ 15 +010 18)" +(18 197
+(18 1T +(15 6T +10 2)"1=(10 1025
m, = (=17 —17)) + (=16 -7)" +(=13 -3)T
+(=7 - +(-1 -D'+©0 -8 +(-3 —13)
+(=7 -16)"1=(-8 -8257
The covariance matrix C,, for w, is

Cy, = E[(x — m;)(x —m,)"] = E[xx"] — mm’

1 I314 171 ‘
~8]171 338.49
From matrix A, we have its transpose as
r_|cos@ —sinf
" |sin@ cos@
Then
C AT—l 314 171 cosfl —sin0
X 78171 338.49||sin@  cosO
or
C Ar—l 314cosf + 171 sin g —314sin6 + 171 cos 0
721171 cos @ + 338.49sinf)  —171sinf + 338.49 cos 8
and
Cy, = A(C,,AT)
or
314 + 24.49sin 0 171(cos? 8 — sin* 9)
1 + 171sin 28 + 24.49sinfcos 0
Cl = =

v
81171(cos2 0 — sin> @) 314 + 24.49 cos? 0
4 24.49sinBcos 8 — 171 sin 20

Set all terms except the diagonal ones equal to zero, we have
171(cos? 8 — sin® 6) + 24.49sinHcosf = 0
0 is evaluated as —43°, and

1]154.51 0 ‘

Co=3l 0 49798

193 0
0 623
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Substituting value of 0 into the expression of A gives

cos(—43°) sin(—43°%)
—sin(—43°) cos(—43°)

—sinf cosf

cosf sinf ‘

The eigenvectors ¢, and ¢, for w, are then

b = cosO| |cos—43°| | 0.73
7 1sinf | |sin—43° |~ | —0.68
and
b, = —sinf| | —sin(—43°)| |0.68
27 cosO| T | cos(—43°)|” {0.73

The two eigenvalues are, respectively,

Ay =314 +24.49sin” 0 + 171 sin 20 = 154.51
iy =314 +24.49cos® O — 171 sin 20 = 497.98

Since 4, > 4, ¢, will be chosen as the first principal component axis. Similar
computations can be worked out for the set of pattern points for w,

1 370 + 2sin 20 71 cos 20

C2y = A(C?_\'AT) =35
71 cos 26 370 — 71 sin 20

Set the off-diagonal term 71 cos 20 equal to 0, we obtain 8 = 45°. Substituting
the value of @ into the expression for C,, gives

1465 0
CZ}"E‘ 0 37.38'

The eigenvectors ¢, and ¢, for w, are then

b = cosB} |1/42

P77 |sinf ]~ | 1/4/2
and

b, = —sin8| | -14/2

27| cosB| T | 1/4/2

The two eigenvalues are, respectively, 4, = 46.5 and 4, = 37.38. Since 4, > 4,,
¢, is then chosen as the first principal component axis. Figure 7.4 shows the
results of the numerical example.
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FIGURE 74 Results for the numerical examples.

74 OPTIMUM CLASSIFICATION WITH FISHER'S
DISCRIMINANT

Multidimensional space, no doubt, provides us with more information for
classification. However, the extremely large amount of data involved makes it
more difficult for us to find the most appropriate hyperplane for classification.
The conventional way to handle this problem is to preprocess the data so as to
reduce its dimensionality before applying a classification algorithm. Fisher’s
linear discriminant uses a linear projection of the #-dimensional data onto a one-
dimensional space (i.e., a line). It is our hope that their projections onto a line will
be well separated by class. In so doing, our classification problem becomes
choosing a line that is so oriented to maximize this class separation without data
intermingled.

Consider an input vector x is projected on a line as a scalar value y, and is
given by

y=wlx (7.55)

where w is a vector of adjustable weight parameter. By adjusting the components
of the weight vector w, we can select a projection, which maximizes the class
separation.

Consider a two-class problem. There are N, pattern samples in class w,,
and N, samples in »,. The mean vectors of these two classes, m; and m,, are
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then, respectively,

| M
m, = — 5" x (7.56)
I ngli
1 M , (7.5
= — 7.57
m, Nzr;xz )

where the subscripts denote the classes, while the superscripts denote the pattern
samples in the class. Note that the projection mean m, for class w, is a scalar and
is given by

1 gl: ! I %‘:WT i
—_ — e X
m, N, ,=1yl N = 1
o T
=w — > X] =Wm (7.58)
Nl =1

Similarly, the projection mean of class w, is also a scalar and is given by

1 A ! 1 & T i
My =3 h =72 WX
NZ i=1 N2 =1
| x (7.59)
T ol T
= —— X =w In
w N, ; 2 2
The difference between the means of the projected data is therefore
my, =m; =w (m, —m) (7.60)

It seems that when data are projected onto w, separation of the classes looks the
same as the separation of the projected class means, and we might then simply
choose an appropriate w to maximize (m, — m,). However, some cases, as shown
in Figure 7.5, would remain to be solved. Projection of (m, — m,) on the x, axis
is larger than that on the x, axis, resulting in larger separation on x, axis but with
larger class overlap. We, therefore, have to take into account the within-class
spreads (scatters) of the data points (or the covariance of the class).

Let us define the within-class scatter of the projection data as

Cy=Y -m) (7.61)
yel
and
Co= 3 (y—m) (7.62)

yeh
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Xz 4

projection - + ™
on X3 axis

projection on X; axis

FIGURE 7.5 Illustration on the necessity to take into account the within-class covariance
when constructing Fisher’s discriminant.

where Y, and Y, are, respectively, the projections of the pattern points from o,
and w,. Fisher’s criterion is then

squared distance of the ¥ means

Jw) = variance of Y (7.63)
or
(my — m1)2
(W) C,+Cp (7.64)

where C,, and C, are, respectively, measures of within-class scatters of the

projected data. The sum of C,; and C,, gives the total within-class covariance for
the whole data set. The numerator of J(w), (m, —ml)z, can be rewritten as
sample means as

(my — m;)* = w!(my —m,)(m; —m;)"w =w'S;w (7.65)
with

Sg = (m; —m, }(m, — ml)T (7.66)
where Sj is the berween-class covariance matrix. Let S,, be the total within-class

covariance matrix:

N, N,
S, = L —m)x —my)" + T —my)x' —my) =C +Cp

xleen X ey

(7.67)
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Then we have

C, +C,=wS,w (7.68)

J(w) can be expressed as

WTSBW
wl'S w

W

J(w) =

(7.69)

J(w) is Fisher’s index of performance (or Fisher’s criterion function) to be
maximized. To maximize J(w), let us differentiate it with respect to w, and set the
result equal to zero, we obtain

(W/Sgw)S, w = (WS, w)S,;w (7.70)
Note that both (w?Szw) and (w”S, w) are scalar. Rearranging gives

S, ww'S;w)(w'S, w)™' = Sw (7.71)
Multiplying both sides by S;' and replacing (w”Szw)w’S, w)~! with 4 gives

(S.'Sp)w = iw (7.72)

Remembering that (S,'Sp) is a matrix, the above expression turns out to be an
eigenvector problem. A solution for w may be found by solving for an
eigenvector of the matrix (S;'Sp).

An alternative solution can be obtained basing on the fact that Szw has the
direction of (m, — m;). From

Sp = (m; —m)(m; — ml)T (7.73)

we can see that Sgw is always in the direction of (m; — m,). In some cases we do
not even care about the magnitude of w, but only in its direction. Thus, we can
drop out the scalar factors and have the following proportionality relationship:

wox S i (m, — m,)) (7.74)
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A Numerical Example

Given that the following pattern points belong to class wy:

=@ 12)7 P =08 147 =0 16)

=10 147 ¥ =12 137 =12 14)7

x}=(11 17)7 S=011 197 =14 24)
0~ (14 22)7 xl'=Q6 21) x}2=(14 16)7

=6 117 =08 18 xF=(18 207

x, =17 2497 x"=(9 227 xIF=(19 24)
=21 247 =2 227

and that the following pattern points belong to class w,:

=1 1y Z=(19 147 x=21 177
g (23 147 X3 =25 13)7 =4 20)7
=27 177 =28 15 x3=09 18)7
x2 =27 23 XN'=032 227 x2=30 36
B=32 197 x#=@33 257 xF=(33 297
=35 227 x'=@6 27" xF=(37 257
x3? ._(38 29 xX0=@37 31
find the line on which projection of the two-dimensional data as listed above can
be well separated by class.
Let m; and C, denote, respectively, the sample mean vector and the

covariance matrix for the /th category (I = 1, 2). These two sets of quantities
can be obtained from the data sets listed above and are found as:

| 14.45 _]29.35
17— 118.65 2712135
and
C. - 17.35 12.61 Co = 32.83 28.03
711261 15.83 27 128.03 43.63

The total within-class covariance matrix is then

50.18 40.64
Sw:Cxl+Cx2:l 0 l

40.64 59.26
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From S,,, we can obtain its inverse as

0.0453 —-0.0310

S-! =
-0.0310  0.0382

The between class covariance matrix, Sz = (m, —m;)(m, —m,)’, can be
evaluated as

29.35 — 14.45
S; = ‘|29.35 — 1445  21.35— 18.65]
21.35 — 18.65
B ‘ 222 40.23 ‘
T 14023 729

From the two matrices (S;') and (Sp) we get

Cve s | 88L 159
(Sw )(SB) - ‘ _5'35 _0'97‘

Referring to the eigenvector equation (7.72) as derived above, and reproduced
here:

(7 )(Sp)w = iw

FIGURE 76 A two-dimensional plot with Fisher’s discriminant drawn for the numencal
example.
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we can find the eigenvectors

8.81
o = ‘ 1.59.
and
—5.35
92 = l—0.97'

Figure 7.6 shows the two-dimensional plot with Fisher’s discriminant drawn [a
line with an inclination of arctangent (1.59/8.81) or 10.23° with the x, axis].
Note the derivation in direction of Fisher’s discriminant from (m, — m;). This is
because spreads of the two classes have been taken into account.

7.5 NONPARAMETRIC FEATURE SELECTION
METHOD APPLICABLE TO MIXED FEATURES

The feature selection methods discussed previously are for those features that are
usual quantitative variables. In this section we discuss a nonparametric feature
selection method that can be applied to pattern recognition problems based on
mixed features. That is, some of the features are quantitative, whereas others are
qualitative.

Feature selection for this purpose based on local interclass structure was
suggested by Ichino (1981). This method consists of the following three steps:

1. Divide the pattern space into a set of subregions, or, in basic event
generation (BEG) terminology, generate the basic events Eg,
k=1,...,N, for class w; by means of the BEG algorithm.

2. Use the set theoretic feature selection method to find a subset of
features, F,, for each subregion (i.e., for each basic event E;).

3. Construct the desired feature Sli\.ljbset by taking the union of feature
subsets obtained in step 2 as [, Fi-

The basic event generation algorithm used in step 1 is essentially a merging
process. Let x =(x;,x,,...,x,) be a pattern vector in the pattern space
R"=Rx Rx---xR. Then if E; and E, are two events in R", it is obvious
that “merge” of these two events is also in R”, thus

M(E, . E))=ECR" (7.75)

where M(.,.) represents the merging function. Suppose that we have training
samples X;, X,, ..., Xy from class w;, and training samples y, y,. ..., yy, from
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classes other than class w,. The events generated by the BEG algorithm for class
w; will be Ey, k =1,2,..., N, (N, <N,). Then we have

N"l
xel JEx, I=12.....N (7.76)
k=1
and
dist(y|[Ex) > T, [=1,2,....N; k=1.2,....N, (7.77)

where dist(y,|E,;), the distance between y, and E;;, must be greater than or equal
to T,, a certain positive number that is usually chosen to be 1. If E; and y, are
expressed, respectively, as

E;,=E)\ x E} x - x E} (7.78)
and
Yi =Wy Yin) (7.79)
then dist(y,|E;) can be defined as
mmqum)=:z%¢@¢wﬁ) (7.80)
p:
where
1 if y, ¢F%
Py = Ip ik
PO IEix { 0  otherwise (7.81)

After the basic events E;, k = 1,2...., N, , are generated by the BEG algorithm
for class w;, the next step will be to select a minimum number of features Fy;, by
which the basic events E, for class w; can be separated from the training samples
drawn from classes other than ;. F, is said to be the minimum feature subset for
the event E, if the following two conditions are satisfied:

(1) dist(y,|E)p, = Ty =1.2,....N:k=1,2,...,N,

i

(7.82)
(2) dist (ylEp)p, -y < T4 for some values of / (7.83)

where p is a feature in F,;. Equations (7.82) and (7.83) are evaluated, respectively,
with feature subsets F, and F; —[p]. Conditions 1 and 2 are equivalent,
respectively, to

\Fpy > Fl|>T, [=1.2...,N;

j’

k=12,...N, (7.84)

1

and
[(Fyp —[pDN F,-lkl < T, for some values of / (7.85)

where the F’ i’k represent the sets of effective features for / training samples not in
class ;. A sequential search procedure for this feature selection can be
summarized as follows:
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1. Let Fj; be the original feature set FO

2. For a feature p € Fy, if |F;
discard the feature and replace Fy by Fy
other features in Fj;.

—[pDNF =T, 1=1,2,....N,

Chapter 7

j!

— {pl; otherwise, try for

3. lterate step 2 until no feature in F;; can be removed.

The resultant F;;, obtained by this procedure is a minimum feature subset.

For example, the original feature set is chosen to be F
Fiy=I[bcl, Fi=lal, Fj =

i

=la, b,c,d). Let

[a], and F};, = [b, d] be the sets of effective features

for the given four training samples, y;, ¥,, ¥3, and y,, respectively. According to
the sequential search procedure, either features ¢ and d or feature b can be
discarded, but not both. The minimum feature subset is then [a, b] or [a, ¢, d].

PROBLEMS
7.1 Given that the following pattern points belong to class w:
=@ 12 £=@8 14" &= 16
=010 1497 S=012 13" =02 147
Xl =1 17 xﬁ—(u 197 =014 24
x}0=(14 2)7 xl=(6 21)  x2=(14 16)"
B=16 177 =8 18)" xF=(18 20)
=17 247 KT=(19 22)"7 AP=(19 24)
=21 24)7 B=22 22)
and that the following pattern points belong to class w,:
A= 1y =09 147 Z=021 17
A=23 147 B=025 137 K$=04 20
; 27 177 B=@28 15" =9 187
10_27 237 xi'=(32 22)7 xz‘—(30 36)"
13=(32 19)7 x54=(33 257 xF=(33 29)7
x§6=(35 22" X =@36 27)7  x¥=(37 25)
=38 297 =37 31

find the line on which projection of the two-dimensional data as listed
can be well separated by class.

7.2 (a) Under what condition it is accurate enough to choose (m; — m,)
as the direction of Fisher’s discriminant for projection of the data
down to one dimension?
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(b) Shown in which one of the cases shown in Figure P7.2 we can
use (m, — m,) as the direction of the line for data projection

m;
\ my—nn

e -my m:

(a1 th)

(9]

Figure P7.2

7.3 Given that the following pattern points belong to class w;:
b= B 2= 1000 =6 15" xi=(0 18)
=018 197 =08 1) =15 67 =010 2y
and that the following pattern points belong to class w,:
B=(=17 —in"  B=(16 -7  B=(-13 =37
b==7 -1 ¥=(-1 -1 X=0 -8)7
x]=(=3 —13)7 X =(=7 —16)
find the new coordinate axis, which is in the direction of the highest

information content and is useful for the classification of the two
classes.

7.4 Given that the following pattern points belong to class w,:
=@ oF X=(5 57 d=014 8
=017 1 S=015 -7 S=a1 -13)
=3 -157 B=(1 -7
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7.5

Chapter 7

and that the following pattern points belong to class w,:

xi=(-16 2)7
xt=(=2 13)f
J=(-5 -4

find the new coordinate axis, which is in the direction of the highest
information content and is useful for the classification of the two

classes.

Write a program to perform the linear transformation that will
emphasize the difference among the pattern samples belonging to

3 =(-15 n’
=0 57
X=(=13 =57

two different categories:

Class 1:

x! = (11.3,11.2)
x} = (14.3,14.2)
x] =(16.3,14.2)

x!0 = (16.3, 16.2)
x}3 — (183, 16.2)
x!o = (12.3,16.2)
x, = (13.3,13.2)

2 = (10.3,11.2)
x2 = (13.3,13.2)
x;8 = (143, 14.2)
X3 = (13.3, 14.2)

xi* =(16.3,14.2)
xi’ =(15.3,15.2)
x{0 = (12.3,12.2)
xP =(15.3,13.2)
x16 = (14.3,15.2)
x‘1‘9=(163 12.2)
x? = (17.3,17.2)
xp> = (15.3,17.2)
x, = (16.3,16.2)
x8! = (16.3,17.2)

x2 = (11.3,12.2)
x5 = (15.3,16.2)
x8 = (16.3, 14.2)
x}l =(17.3,17.2)

14— (15.3, 14.2)
x}” = (13.3,12.2)
x? = (15.3,12.2)
xP =(15.3,12.2)
x2° = (13.3,12.2)
x, =(15.3,16.2)

32 =(13.3,15.2)

x3P = (13.3,13.2)
x3? =(13.3,12.2)
x{! = (14.3, 14.2)
xt = (14.3,16.2)
x}’ =(14.3,17.2)
x3¥ = (13.3,13.2)
x;° =(17.3,15.2)
x;® =(16.3,17.2)
x>’ =(17.3,15.2)
x$? = (15.3,16.2)

1Hf
_1)T

x%:(—ll

x§ = (-1

x} = (13.3,16.2)
x6 = (13.3,15.2)
x; =(17.3, 18.2)
x, =(15.3,15.2)

15 = (15.3, 15.2)
x18 = (14.3,12.2)
X2 = (143, 14.2)
x2 = (12.3,13.2)
x27 = (14.3,14.2)

x3% = (15.3,16.2)

x3 = (15.3,16.2)
x?(’ =(13.3,13.2)

3 =(13.3,14.2)
x¥2 = (11.3,12.2)
x1 = (13.3,14.2)

48 = (15.3,13.2)
X3 =(14.3,13.2)
X34 = (18.3,15.2)
x5 = (15.3, 16.2)

x80 = (15.3,15.2)
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x} =(—5.7,-0.8)
x} =(-3.7,-1.8)
x; =(—5.7,—3.8)

x10 = (=3.7, ~4.8)
x§3 =(-8.7,-7.8)
xi® = (—9.7, —-8.8)
x}? =(-9.7,-9.8)
x32 =(—3.7,-2.8)
x3 =(-7.7,-5.8)

x28 =(1.3,1.2)
x3 1=(1.3,1.2)
4=(1.3,3.2)
x§‘7 =(2.3,2.2)
xi0 =(1.3,0.2)
x$P =(53,1.2)
x30=(4.3,4.2)
x3 ?=(-6.7,-17.8)
3 =(—1,7-1.8)
x3> =(1.3,3.2)
x3 =(3.3,5.2)
x§! =(2.3,2.2)
x§’4 =(4.3,3.2)
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x} =(—11.7,-7.8)
x; =(-0.7,-0.8)
x$ =(—4.7,-4.8)
xj! =(-3.7,-2.8)
x§4=( 10.7, -7.8)
x3 7=(=5.7,-17.8)

0 =(~3.7,1.2)
x§3=( 6.7, —6.8)
6 =(-0.7,1.2)
x3 =(23,1.2)
x32=(2.3,3.2)

3 =(-0.7,-0.8)
x3 =(2.3,-0.8)

' =(—0.7,-4.8)
x3*=(2.3,-0.8)
x3 =(23,3.2)

30 =(43,4.2)
x3° =(3.3,-0.8)
x3®=(8.3,2.2)
x3’ =(3.3,4.2)
x$2 = (11.3,7.2)
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x3 =(—5.7,-4.8)
x§ =(-2.7,-2.8)
x; =(—4.7,—1.8)
xi2 =(—9.7,-9.8)
x3 =(—4.7,-2.8)

=(—6.7,-5.8)
x%‘:( 9.7, -5.8)

24 = (-7.7,-78)
x3’ =(-8.7,-3.8)
x3 =(-1.7,3.2)
x3> =(1.3,1.2)
x3 =(3.3,3.2)

¥ =(-0.7,-1.8)
x32=(2.3,4.2)

x5 =(=3.7, ~3.8)
xg8=( 2.7,-3.8)
x3 =(=2.7,-2.8)

3 =1(6.3,6.2)
x3' =(1.3,1.2)
1.{3 =(3.3,4.2)
x$ =(5.3,7.2)

7.6 Write a program to perform the linear transformation that will
emphasize the difference among the pattern samples belonging to
two different categories:

Class 2:

x} =(=17.7,-12.8) x2=(-187,-14.8) x3=(—13.7,~11.8)
x}=(-21.7.-16.8) x3=(~20.7,~15.8) x§=(-18.7,—13.8)
x] =(—20.7.—15.8) x8=(—16.7,—12.8) xJ=(—21.7.—14.8)
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X0 = (=217, -17.8)
x}3 = (~16.7. —15.8)
X318 =(-23.7,-17.8)
x)? = (~19.7. -17.8)
x3? = (—20.7, —16.8)
x$ = (=17.7, —15.8)
x2% = (=21.7, —18.8)
x3! =(-17.7,-13.8)
x}* = (—18.7, —15.8)
X3’ =(—19.7, —16.8)
x3° = (—18.7, —15.8)
X3 =(—16.7. -10.8)
x3° = (—16.7, —13.8)
x} =(-14.7,-13.8)
x32 = (—14.7, —12.8)
x> = (—15.7. ~13.8)
x38 = (—14.7, —11.8)
x§! = (—18.7, —14.8)

Class 3:

x} = (~5.7.-0.8)
x}=(-3.7.—-1.8)
X} =(-5.7,-3.8)
x{0=(-3.7.-4.8)
X} =(—8.7,-7.8)
xi¢ =(-9.7, ~8.8)
x}? =(-9.7, -9.8)
x3? =(-3.7,-2.8)
x2 =(-7.7,-5.8)
x3¥=(1.3,1.2)
x3! =(1.3,1.2)

x}! =(-20.7, -16.8)
X =(~16.7, —17.8)
x) =(—18.7,-19.8)

x5’ = (—22.7, -22.8)
x5} = (—19.7, —19.8)
x3¢ = (—23.7, -21.8)
x3 = (—16.7. —14.8)
x3? = (—15.7,~11.8)
x3> = (—15.7, —13.8)
X3 =(—16.7.—11.8)
X3l =(-13.7.-11.8)
xj* = (—13.7.-12.8)
x) = (—13.7, ~13.8)
X3¢ =(—16.7, —11.8)
X3 = (—22.7. —19.8)
x3¢ =(—19.7. —18.8)
x)) = (—18.7,-16.8)

xi=(—11.7.-7.8)
x; =(—0.7. -0.8)
x3=(-—47—48)
xi' =(-3.7.-2.8)
x3 =(—10.7,-7.8)

xg"_( 3.7.1.2)
¥ =(-6.7,-6.8)
x3¢ = (-0.7.1.2)
x? =(2.3.1.2)
x32 =(2.3.3.2)
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x12 = (=20.7. —17.8)
x¥ = (~26.7, —24.8)
x\¥ = (=257, —23.8)
x2 = (=26.7. —24.8)

24 = (=20.7. —19.8)
x27 = (—17.7. ~16.8)
x30 = (=21.7. —17.8)
x3 =(-16.7, —11.8)

X3 = (—19.7. —18.8)
X3 = (—21.7, ~18.8)
x2 = (=17.7, —16.8)
x2 =(—18.7.-15.8)

8 =(-22.7.-16.8)
X! =(—18.7.-16.8)
X34 =(—16.7. —14.8)
Xy =(—10.7,-7.8)
X80 =(—=11.7.—13.8)

X3 =(—5.7,—4.8)
x§ =(-2.7.-2.8)
xj = (—4.7.—1.8)
X2 =(-9.7.-9.8)
X’ =(—4.7.-3.8)
x}® =(-6.7,-5.8)
x3! =(=9.7. —5.8)
x3* =(-7.7.-17.8)
x3—( 8.7.—3.8)
)u{3 _(1312)



X =(1.3,3.2)

X3 =(2.3,2.2)
x3® =(1.3,0.2)
x$P =(53,1.2)
x3 =(4.3,4.2)
¥ =(-6.7,-7.8)
x32 = (—1.7, —1.8)
x3° =(1.3,3.2)
X% =(3.3,5.2)
x§!' =(23,2.2)

Xt =(43,32)
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x3 =(-0.7, -0.8)

3 =(2.3,-0.8)
x3 =(—0.7, —4.8)
4 —(2.3,-0.8)

3 =1(23,3.2)
x30 = (4.3,4.2)
x3* = (3.3, -0.8)

X0 =(8.3,2.2)
x§9 =(3.3,4.2)
3 = (11.3, 7.2)
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x3%=(33,3.2)
x}? =(-0.7,-1.8)
x§2 =(2.3,4.2)
xg5=( 3.7,-3.8)
=(-2.7,-3.8)
X3! _( 2.7,-2.8)
x§4 =(6.3,6.2)

7=(13,1.2)
x3 =(3.3,4.2)
X8 = (5.3,7.2)
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Part 11

Neural Networks for Pattern
Recognition

Neural networks are networks of living nerve cells. Such a network of neurons
(nerve cells) possesses the capability of thinking, feeling, learning, and remem-
bering. Artificial neural networks and neurocomputers are models inspired by
these brain functions, and are defined as mathematical models of theorized mind
and brain activity. Artificial neural networks go by many names, such as
connectionist models, parallel distributed processing models, neuromorphic
systems, adaptive systems, and self-organizing systems. Whatever the name,
the objective in studying these models is to understand how the brain provides
human beings with such abilities as perceptual interpretations, reasoning, and
learning, that is, how such “computations” are organized and carried out in the
brain.

Artificial neural networks (ANNs) are being developed as a technological
discipline that can automatically develop operational capabilities to adaptively
respond to an information environment. The evolution of the artificial neural
networks has not been smooth. Research in this field has been under way since
the 1950s. The period 1950-1960 was the golden era of artificial neural networks.
By the mid-1960s, the first success of neurocomputing drew to a close for some
reasons.

During its quiet years (from 1967 to 1982) little explicit neurocomputing
research was carried out in the United States. A great deal of neural network
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research went on under the headings of pattern recognition, biological modeling,
and adaptive signal processing. In 1983 enthusiasm for neural networks returned.
The first breakthrough was through the DARPA (Defense Advance Research
Projects Agency). They bravely diverged from tradition. Now the research on
neural networks has become a hot subject, and there are quite a few new
applications

Why did it die and resurrect again? This is due to the restriction inherent in
the technology in the early days of this research. Inputs passed serially to the
classifier and computations were performed sequentially. In addition, system
parameters were typically estimated from the training data set and then held
constant. However, in neural network classifier, the internal functional computa-
tions would naturally be carried out in parallel with output feedback. The
parameters or weights used in the net would not be held constant but adapted
or trained continuously during use.

Thanks to advances in technology such as new net topologies and
algorithms, and new analog VLSI implementation techniques, as well as a
deeper understanding of how the human brain works, a great deal of interest
has been promoted during recent years. This has been motivated primarily by the
desire to build a powerful computer to resolve a variety of problems that are still
very difficult to handle using conventional digital computers. Examples of such
problems are pattern recognition under real-world environments, fuzzy pattern
matching, and nonlinear discrimination, where two functions are most important:
(1) the associative property, the ability to recall; and (2) self-organizing, the
ability to learn through organizing and reorganizing in response to external
stimuli. Such humanlike performance will require an enormous amount of
processing. To obtain the required processing capability, an effective approach
should be developed for the dense interconnection of a large number of simple
processing elements, an effective scheme for achieving high computational rates
is required, and many hypotheses would need to be pursued simultaneously.

There is no doubt that vector quantization or grouping of inputs into
clusters should be implemented in an artificial neural system for data compres-
sion without losing important information. As suggested by Lippman (1987), a
taxonomy of five neural nets that can be used as pattern classifiers is shown
below:

Hopfield net

Hamming net for binary inputs
Neural network | Carpenter-Grossberg classifier
classifiers Multlayer perceptron

for continuous-

Kohonen self-organizing valued inputs

| feature maps
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The Hopfield net, Hamming net, and Carpenter-Grossberg classifier have been
proposed for binary inputs, while the perceptron and Kohonen self-organizing
feature maps have been developed for continuous-value inputs. Some of these net
models are discussed below. An artificial neural network can be taxonomized as
feedforward and feedback recall based on their recall qualities. It can also be
taxonomized as a supervised or an unsupervised learning based on their encoding
qualities. Both supervised and unsupervised learning are part of the successful
research results.
Applications currently on the neural networks can be found in:

Adaptive noise canceling in telecommunication

Mortgage risk evaluator

Bomb sniffer in airport

Process monitor on the production line tracking such things as

variations in heat, pressure, and the chemicals used to make a product

(e.g., bulbs}

5. Word recognizer

Blower motor noise checker

7. Airline marketing tactician working on optimizing airline seating and
fee schedule

8. Etc.

W -

o

It could be expected that lots of applications would pop up like spring flowers
after rain. To name a few, in the area of environmental science and technology,
ANNS are being applied to weather forecasting and trend analysis. In the financial
area, ANNSs are being used in credit risk assessment, forgeries identification, and
handwritten forms interpretation. In manufacturing, use of ANN for process
control, quality assessment, and parts selection on an assembly line are being
investigated. Research is also underway in medical diagnosis and prescribing
treatments from symptoms, in monitoring surgery, and in monitoring epileptic
seizures. Aside from these, ANN will definitely play art important role in the
military applications, for example, in recognizing and tracking targets, in
reconnaissance, and in classifying radar signals and creating smart weapons.

It will not be difficult to see that most of potential applications have
something to do with pattern recognition. Briefly speaking, in these applications
we are searching for patterns from the environment and then classifying them, or
we are reconstructing correct patterns from distorted ones and then reinterpreting
them. It is also obvious that the applications mentioned above have something to
do with perception and sensory datalike visual, auditory, infrared, and other
signals. They exhibit behaviors characteristic of people rather than of conven-
tional computers. What follows in this book will focus on the design of an
artificial neural network for pattern recognition.
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Multilayer Perceptron

8.1 SOME PRELIMINARIES

Neural network is a very popular subject now. Many different models have been
proposed. In this book the author does not intend to review all these models, but
to select only some of them to illustrate the concepts of the neural networks and
how to proceed from concepts to the solution of our reai-world pattern recogni-
tion problems.

Perceptron is the earliest of the neural network paradigms. ADALINE
(ADAptive LINear Elements) and MADALINE (Multiple ADALINES in parallel)
as discussed in Chapter 3 are examples of perceptron. They use the least-mean-
square {LMS) algorithm for their system operations. Their implementation is
comparatively simple and can be used for classification of patterns that are
linearly separable.

In Chapter 4 we depicted a solution region for a two-class problem, and
also formulated an error correction training procedure by the method of steepest
descent, that is, moving the weight vector W 1 a direction perpendicular to the
hyperplane (i.e., in the direction of z, or —z,) where z, € w, and z, € w,. Figure
8.1 shows a schematic diagram for the system that is self-explanatory.

Suppose that the system shown in Figure 8.1 has already been well trained.
When z, € w, is presented to the system, output response of the system should
be greater than zero; it is 1 after it is thresholded by a hard limiter. When z, € v,

201



Network

t (Desired output)

VA '
1 s
Z1 Output i
. . response ;
Z=): 1§ . : @
z, z E
n e
' Y [4
Output '
layer i
................................................. 3
wli= (wywy wnT) d(x)= wx
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is presented, the output response of the system should be less than zero, and is
thresholded to 0 according to the discriminant function described below:

dlz(X) = sz
Otherwise, the system is still not well trained, and the weight vector

W=(w, w, --- w,) should be adjusted according to Eqgs. (8.1) to (8.3)
to make W7z a proper value as expected

Wk+1)=Wk)+cz;, if Wiz <0 (8.1)
Wk+1)=W(k)—cz, if Wiz, >0 (8.2)
Wk + 1) = W(k) if correctly classified (8.3)

where W (k) and W(k + 1) are, respectively, the weight vectors at the ith and
(k + 1)th correction steps. To add a correction term cz, implies moving the
weight vector in the direction of z,. Similarly, subtracting a correction term cz,
implies moving the weight vector W in the direction of —z,;, where z; and z,,
respectively, belonging to w; and w,.

For the case that the number of classes is greater than 2 (ie., M > 2),
similar procedures can be followed. However, it would be more convenient to use
separate discriminant functions:

dx)=W/'x i=12,....M (8.4)
We desire that

di(z) > di(z) whenz e w, Vj # i (8.5)
If so, the weight vectors remains unchanged. But if d,(z) < d;(z) and z is known
to be in w; for all j # i, misclassification occurs, and weight adjustments will be

needed. Under these circumstances, the following adjustment can be made for the
fixed increment rule:

Wik +1) = W,(k)+cz if di(z) < dj(z) (8.6)
Wik + 1) = W,(k) — cz if di(z) > d{(z) (8.7)
W,k + 1) = W;(k) if correctly classified (8.8)

Adjustment according to Eq. (8.6) is to increase d;(z) to make d{(z) > d(z).
Adjustment according to Eq. (8.7) is to decrease d,(z) so that di(z) will be less
than d,(z). Equation (8.8) implies that no adjustment on i, is needed for those
that did not make any incorrect <lassification. Figure 8.2 describes the scheme for
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where WP = (w; wp---wy),i=1,2,..., M. Note that Figures 8.1 and 8.2
are already in a neural network form, but with only input and output layers in the
network. The network described above is called perceptron of its simplest form. It
is used for linear classification problems only. To solve some more complicated
and diverse problems, we have to go to perceptrons with one or multiple hidden
layers in between the input and output of the system. This is known as multilayer
perceptron. The powerful capability of the multilayer perceptron comes from the
characteristics of its network arrangement. They are (1) one or more layers of
hidden neurons used that are not part of the input or output of the network; (2) a
smooth nonlinearity, e.g., sigmoidal nonlinearity, employed at the output end of
each neuron; and (3) a high degree of connectivity in the network. These three
distinct characteristics enable the multilayer perceptron to learn complex tasks by
extracting more meaningful features from the input patterns. The reasons are
obvious. A perceptron with only one input and output layer forms only half-plane
decision regions. It then has the difficulty in differentiating classes within nested
regions. Additional layers containing hidden units or nodes introduced will give
smooth close contour-bound input distribution for two different classes. With a
hidden layer in between the input and output layers of the perceptron, any convex
region in the space can be formed. A perceptron with two hidden layers can then
form arbitrary complex decision regions, and can therefore separate the meshed
classes (see the workout example at the end of this chapter). In practice, no more
than two hidden layers are required in a perceptron net.

8.2 PATTERN MAPPINGS IN A MULTILAYER
PERCEPTRON

Figure 8.3 shows a three-layer perceptron with N continuous-valued inputs, and
M outputs, which represent M output classes. Between the inputs and outputs are
two hidden layers. y,, [=1,2, ..., M, are the outputs of the multilayer percep-
tron, and x; and x; are the outputs of the nodes in the first and second hidden
layers. 9} and 6/ are the initial offsets (biases). Wy, i=12,...,N,
j=12,...,N,, are the weights from neurons in the input layer to those of
the first hidden layer. They are to be adjusted during training. Similarly, W},
j=12,.... N, k=12 ..., Ny and Wy, k=1,2,..,N,, I=1.2,..., M,
are, respectively, the weights connecting neurons in the first and those in the
second hidden layers, and the weights connecting neurons in the second hidden
layer and those of the output layer.

The outputs of the first hidden layer are computed according to

N
xj’:f(z}wﬂxf—oj) ji=12,...,N| (3.9}
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FIGURE 8.3 A multiplayer perception with two hidden layers.

Those of the second layer (also a hidden layer) are computed as:

Nl
Xy :f(zw,gx]’—();{) k=1,2,....N (8.10)
j=1
and the outputs of neurons in the output layer are

N
y;:f(ZwIka—H}’) [=1,2,....M (8.11)
k=1

The decision rule is to select that class which corresponds to the output node with
the largest value. The /s in the computations above can be either a hard limiter,
threshold logic, or sigmoid logistic nonlinearity, which is 1/(1 4+ e~
Without doubt, to train such a perceptron with multilayers is much more
complicated than that for a simple perceptron (i.e., a perceptron with only input
and output layers). This is because when there exists an output error, it is hard to
know how much error comes from this input node, how much come from others,
and how to adjust the synapses (weights) according to their respective contribu-
tions to the output error. To solve such a problem, we have to find out the effects
of all the synapses (weights) in the network. This is a backward process. The
back-propagation algorithm is actually a generalization of the least-mean-square



Multilayer Perceptron 207

(LMS) algorithm. It uses an iterative gradient technique to minimize the mean-
square error between the desired output and the actual output of a multilayer
feedforward perceptron. The training procedure initializes by selecting small
random weights and internal thresholds. Training samples are repeatedly
presented to the net. Weights are adjusted until they stabilize. At that time the
cost function (or the mean-square error as mentioned above) is reduced to an
acceptable value. In brief, the whole sequence involves two phases: a forward
phase and a backward phase. In the forward phase the error is estimated, while in
the backward phase weights are modified to decrease the error.

821 Weight Adjustment in Backward Direction
Based on Proper Share of each Processing
Element—A Hypothetical Example for
Explanation

Let us take a very simple hypothetical example to explain how can we adjust the
weights in the backward direction based on the system output error and the proper
share of each processing element (PE) on the total error. Figure 8.4 shows the
hypothetical network for this purpose.

In the present example, there are three layers. The input layer, or the first
layer of this network, serves as the holding site for values applied to the network.
It holds the input values and distributes these values to all units in the next layer.

Output

Input layer Hidden layer Output layer

FIGURE 8.4 A simple hypothetical perceptron network.
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The output layer, or the last layer of the system, is the point at which the final
state of the network is read. The layer between the input and the output layers is
the hidden unit (layer).

In this figure, a; and a, are the processing elements (PEs) in the input layer;
by, b,, b3, and b, are the PEs in the hidden layer; and c is the PE in the output
layer. vy, v12; Vs, g2, U3y, U355 and vy, V45 are the weights (synapses) connecting
PEs in the input layer and those in the hidden layer. wy,, w,, w3, and w,, are the
weights connecting the PEs of the hidden layer and that of the output layer. For
brevity, let us just use @, and a, as the outputs of PEs of the input layer; b, b,, b,
and b, as the outputs of the PBs of the hidden layer; and c¢ as the output of the PE
of the output layer.

This network is supposed to function as a pattern associator through
training. It should have the ability to learn pattern mappings. Training is
accomplished by presenting the pattern to be classified to the perceptron network
and determining its output. The actual output of the network is compared with a
desired output (or called “target” output) and an error message is calculated. The
error measure is then propagated backward through the network and used to
determine weight changes within the network. The purpose of the network weight
adjustment is to minimize the system output error, and the minimization of this
error is done at each stage through the weight adjustment. This process is
repeated until the network reaches a desired state of response.

To start with, let us randomly choose values for the weights as listed below
and proceed to adjust these weights backward from the output layer

wyp = 1.25
Wy = 1.50
wi; = 4.00
wi, = 3.50
v = 1.00
v;; = —1.50
vy =  3.50
vy = —4.50
vy =  2.10
vy = 2.50
vy = 1.00
vy, = —1.00

Assume that we are given the following two prototypes; one belonging to class 1,
and the other belonging to class 2:

(a;,a,) =(0,1) eclass 1
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and
(a,.a;) = (1,0) € class 2

For this two-class problem, the output of the system should be 1, if a pattern
belonging to class 1 (i.e., the first pattern) is presented to the system. When a
pattern belonging to class 2 (the second pattern) is presented to the system, the
output response of the system should be 0. Let us now present the pattern (a;,
a,) = (0, 1) to the system. The desired output ¢ of the system in this case should
be 1, because this pattern is known belonging to class 1. Let us proceed to
compute the actual output of the system with this known information. Using the
notation as suggested in the previous paragraph, the output of the processing
element a, is a,, and that of the processing element a, 1s a,. With the same
notation, the output of the PEs, b,, b,, b3, and b,, are, respectively:

by =v); xa,+v; xa,=100x0+(-1.50)x 1 =-1.50
by = Uy X @) + Uy X ay = 3.50 x 0+ (—4.50) x 1 = —4.50
by =v3 Xa; +v3y Xa, =2.10x0+4+250x1=250

by =04 Xay+ U4 xa,=100x0+(~1.00) x 1 =-1.00

The actual output of the system c is

Cc = Wllbl + W12b2 + W]3b3 + W]4b4
= 1.25 x (—1.50) 4 1.50 x (—4.50) + 4.00 x 2.50 + 3.50 x {—1.00)
=—188—-675+10—-3.50=-2.13

The error for the network output e is equal to the difference between the desired
output ¢ and the actual output c, or

e=t—c=1—-(-2.13)=3.13

This error should be properly shared by these processing elements b,, b,, b4, and
b4 of the hidden layer. The shares for those processing elements, namely b,, b,,
bs, and b, are, respectively,

ey =we=125x3.13=391
ey, = wipe = 1.50 x 3.13 =4.70
€3 = wze = 4.00 x 3.13 =12.52
eps = wie = 3.50 x 3.13 = 10.96
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From these values of shared error we can compute the new values for each of the
12 weights. Thus we obtain

win(D=w (0)+ (¢ —c)xc=1254+3.13 x(=2.13) = -5.42

wi(1) = w0} +(t—¢) xce=150+3.13 x (=2.13) = =5.17

wi3(1) = w3 (0) +(t —¢) x c =4.00 4+ 3.13 x (—2.13) = —2.67

wig(D) =w(0)+{(r —¢) x ¢ =3.50+3.13 x (-2.13) = =3.17

where (7 — ¢) is the system error, and c¢ is the output of the system

v (1) = v1(0) + €55, = 1.00 + 3.91 x (—1.50) = —4.87

v12(1) = 11,(0) + e, 6, = —1.50 +3.91 x (—1.50) = —7.37

21 (1) = 051(0) + ep2b, = 3.50 +4.70 x (—4.50) = —17.65

vpa(1) = v23(0) + 0, = —4.50 + 4.70 x (—4.50) = —25.65

v3;(1) = v3(0) + ep3bh3 = 2.10 + 12.52 x (2.50) = 33.40

U35(1) = v33(0) + 303 = 2.50 + 12.52 x (2.50) = 33.80

041 (1) = v41(0) + ep4by = 1.00 + 10.96 x (—1.00) = —9.96

Vgr(1) = v45(0) + ep4b4 = —1.00 4+ 10.96 x (—1.00) = —11.96
where e, i=1,2,3 and 4, are the errors shared by the four neurons in the
hidden layer, namely, b,, b,, by, and b,; and b, b,, b;, and b,, as mentioned
previously, represent respectively outputs of the neurons by, b,, b;, and b,. The
weights just computed for the first iteration (i.e., through one feed forward and

one backward pass) compared with their original values resulting from random
selection are tabulated in the following chart:

Processing elements Weight Origmal value Adjusted value
b] U11 1.00 —4.87
b, ry —1.50 —7.37
b, Voq 3.50 —17.65
b, Dy —4.50 —25.65
by Dy 2.10 33.40
b, Uy 2.50 33.80
b, D41 1.00 -9.96
b, tyn -1.00 -11.96
¢y Wy, 1.25 —5.42
¢, Wiy 1.50 ~5.17
¢, Wiy 4.00 —-2.67
Cy Wiy 3.50 -3.17

There may be numerous iterations needed to satisfactorily train the network. Each
iteration requires all the calculations as shown above.
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After this pattern has been correctly classified as belonging to class 1, then
the second pattern (a,, a,) = (1, 0) is presented to the system. The desired output
of the system now should be 0, since this pattern 1s known belonging to class 2.
The same comutation procedure will follow. As before, there may be many
iterations needed again to satisfactorily train the system to give output response 0.
When the system makes no misclassification on both these two prototypes, the
system can then be said trained.

Even for this very simple problem, lots of computations are needed. For a
real-world problem the complexity of computation is obvious. Manual computa-
tion will definitely not be a possible solution and help from modern computer to
perform the tedious computation is needed. What follows will be the develop-
ment of an algorithm for the backpropagation training for the system.

8.2.2 Derivation of the Back-Propagation Algorithm

The development of the back-propagation learning algorithm provides a compu-
tational efficient method for the training of a multilayer perceptrons. The term
backpropagation, which is based on the error correction learning rule, appears to
have evolved after 1985. The back-propagation algorithm derives its name from
the fact that partial derivatives of the performance measure with respect to the
synaptic weights and biases of the network are determined by back-propagating
the error signals through the network layer by layer.

Figure 8.3 shows a multilayer perceptron network with two hidden layers.
The error back-propagation learning consists of two passes: a forward pass and a
backward pass. In the forward pass, the input signal propagates through the
network on a layer-by-layer basis, and a set of outputs is produced as the actual
response of the network. During the forward pass the synaptic weights are all kept
fixed. An error signal is then obtained from the difference between the actual
output response of the network and the desired (or target) response. This error
signal is then propagated backward through the network, against the direction of
the synaptic connections, and the synaptic weights are so adjusted to minimize
the output error (i.e., to make the actual output response close to the desired
value). This is what we called the backward pass. To perform this minimization,
weights are updated on a pattern-by-pattern basis. The adjustments to the weights
are made in accordance with the respective errors computed for each pattern
presented to the network.

As before, we use the gradient descent approach for the error back
propagation for the multilayer perceptron. This involves two processes:

1. Based on the mapping error £, compute the gradient of £ with respect
to wy;, 0E/dwy;, where w;; refers to the synapse (or weight) connecting
the processing element j of this layer (say the Lth layer) to the
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processing element i of the nearest previous layer (say the (L — 1)st
layer).

2. Adjust the weights with an increment which is proportional to
—oE/dwj;, i.e.,

oF

Aw; X ——
ra
ow;;

The negative sign in front of 6£/dw;; signifies that the change in each weight,
Awy;, will be along the negative gradient descent which leads to a steepest descent
along the local error surface. Adjusting the weight with this Aw, will result in a
step in the weight space toward lower error.

Assume that we are given a training set H:

H={({t) k=12 ....n (8.12)

where i* is the kth input pattern vector presented to the system. t* is the desired
(or the target) vector, which corresponds to the kth input vector i*. (i¥, t) forms
the kth pair of input/output vectors. Let i¥ be the ith component of the kth input
pattern vector i, or

i*eif (8.13)

and let Oj‘ be the jth component of the kth actual (or computed) output vector o,
or

0} e O (8.14)

Similarly, tj‘ is the jth component of the corresponding kth target vector t*,
Let us now proceed to do the individual weight correction with a
prespecified input training pattern i*. Starting with the output layer, we have

e =tF — O (8.15)

where e* is the output vector when the kth input vector i is presented. Chosse
mean-squared error as the performance criterion function J,

J = 1) et =1t (8.16)
Then we can write
Ef =1|¢t - Of? (8.17)

or

Mz

k
Ef =1

(tf — OF) (8.18)

1

I

J
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where [t8 — O*|? is the measure of the “distance” between the desired and actual
outputs of the network, and %Zﬁl(tj" — O%)* is the sum of the squared errors.
The constant “%” added is to simplify the derivation which follows. Note that
each item in the sum is the error contribution of a single output neuron.

The basic idea of backpropagation is to propagate the error backward
through the network. Each neuron in the output layer adjusts its weights, which,
respectively, connect it to the neurons in the nearest previous hidden layer, in
proportion to the error contribution of the individual neuron in the previous layer.
This applies to all the neurons in the output layer. After these are done, each of
the neurons in the nearest previous hidden layer will follow the same way to
propagate the share of the allocated error to each of the weights which connect it
to each of the neurons in the next previous hidden layer and adjust them. So on
and so forth until the previous layer is the input layer. This constitutes an
iteration. By completing this iteration, all the weights in network will be adjusted
according to their proper shares to the output error. There will be many iterations
in the training process. It can therefore be easily seen that there are lots of
adjustments needed to be done on the weights (synapses). So, let us analyze the
network in more details.

As in a single layer perceptron, each neuron in a multilayer perceptron is
also modeled as f;[3 _,(w;;0; + bias)] or fi(net,), except that the activation function
is a sigmoidal function instead of a hard limiter. Note that O, here refers to the
output of the neuron in the previous layer. It is also the input to this neuron. For
the jth neuron of the output layer, the activation function is of the following form:

Of = fi(net}) = );(z w;;Of + 9,) (8.19)

where Of is the output of the jth neuron unit in the output layer, Of is the input to
the particular jth neuron in the output layer from the ith neuron of the previous
hidden layer, and 0, is the bias. f(.) is an activation function, which is kept
unchanged for the presentation of the various patterns. Let us choose

1
J(net) = I + exp(—net;)

(8.20)
and
0 <f(net) <1

as the activation function. It is a nondecreasing and differentiable function called
sigmoidal activation function. Remember that when pattern & is presented to the
multiplayer perceptron system,

M
E' =334~ 0 (8.21)
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As mentioned before, the gradient descent approach can be used to minimize E;
through the weight adjustment, i.e.,
oE*
Aw;; X —— (8.22)
wj;
Figure 8.5 shows the signal flow graph highlighting the details of output neuron ;.
To minimize the error £, take the partial derivative of E; with respect to wy,
OEF  9EF 30}
w, BO" aw;

i

where 0F, / 80’? represents the effect on E* due to the jth neuron of the output
layer and 2O¥ /aw measures the change on Of as a function of w;;. Recall that the
output O" is dlrectly a function of net;, or

(8.23)

OF = f(net) (8.24)
and
305
Bn— =/ (net,) (8.25)
Neuron ;

- ]

k ook
Netj=2[ Wi 0

FIGURE 8.5 Highlight on the output ncuron j in a perceptron pattern classification
system,
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0E; /dw;; then becomes

OEF  GEF BOJ"-' 9 net;

_ _ (8.26)
dw; 30 Omet, dw;

In general, net, can be put as:
net; = ; w, Of (8.27)

and O} is the output of a neuron in a previous nearest layer (i.e., the second
hidden layer) and it is the input to this neuron (the neuron j). This is true for the
output layer and is also true for the hidden layer. If this input is a direct input to
the network (i.e., from the input layer), it then becomes 0§‘ = i¥. Taking partial
derivative of net, with respect to w;; gives

d net, _ O wj,O’,‘)

(8.28)
3wj,- dwy;
WXy war OF +w;0)
or = Z’# it / (8.29)
Bwj,-
or =0 (8.30)
Substitution of Eq. (8.30) into (8.26) gives
OE*  BE* 80F 031
ow;; 20k Bnetj' f (8.31)
oE*
or = - O
dnet,

where 0EF /9 net, = (8E*/80%) - (30% /3 net,) is the sensitivity of the pattern error
on the activation of the jth unit. Let us define the error signal oj"' as

dE*

koo
% T T ey, (8-33)

Substitution of ¢ for —8E* /8 net, in Eq. (8.32) gives
oE* .
o —(0))0} (8.34)

We can then apply the gradient descent approach to adjust w;;. The weight
adjustment A* wy; 1s then

Ak”f,‘f =~ — = 1o, O} (8.35)

1 in (8.35) is a positive constant used to control the learning rate.
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In the context, we may identify two distinct cases depending on where in
the network neuron j is located. In case 1, neuron j is an output node, while in
case 2, neuron j is a hidden node.

Case 1: When neuron j is an output node. Since netj’? remains unchanged

for _all input patterns, we can leave the superscript & out from net,. Express ajk by
chain rule as

: BE* aE* 00K
0 = — o= — g (8.36)
d net; 90% 3 net;
Since Of = f(net)), we then have
0 _y L) (8.37)
3 net; =/ (net, '
and
G 1
S (net)) = ( )
77 9 net; \ 1 4 exp(—net,)
= ! [exp(—net,)]
[ +exp(—net)’ ’
=01 -0 (8.38)
Subscription of the f*(net;) into the expression for aj" [Eq. (8.36)] gives
oEF 90}
o = ——"
/ 00f 9 net,
OE* '
=L o1 - o) (8.39)
J f
0]
Remember that the neuron j in this case is an output node,
a 2
E' =330 - O) (8.40)
=1
and
3E*
= = —(r_f - of) (8.41)
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By substituting Eq. (8.41) into Eq. (8.39), we obtain an expression to compute the
crj" for the neuron j of the output layer:

= (ff — 0)Of(1 — O)) (8.42)

The increment adjustment of the weight Afw w;, which connects the neuron j of the
output layer to the neuron i of the nearest previous hidden layer (i.e., the second
hidden layer), for the kth presented pattern can be computed by

A* Wy = 110"0" (8.43)
or

Ay, = (e — ONOK(1 ~ 09OF (8.44)

Case 2: When neuron ] is a hidden node Even though hidden neurons are
not directly accessible, they share responsibility for any error made at the output
of the network. We should penalize or reward hidden neurons for their share of
the responsibility. Figure 8.6 shows the signal flow graph highlighting the details
of output neuron m connected to hidden neuron j. From this figure it is obvious
that we cannot differentiate the error function directly with respect to the output
of the jth neuron Of We have to apply chain rule again. From Figure 8.6 we can
see that the output at net,, is

net, = Z wmlol (845)

When we propagate the error backward, we are to find the effect of £ due to O%.
Take the partial derivative of E* with respect to O"

DEF BE* 4 net,,

% - Z a netm 00;

(8.46)

Neuron J Neuron 1

m

0, *

n -

1, = ()

=t "

[¢)

n

FIGURE 8.6 Highlight on the output neuron m connected to hidden neuron j in a
multilayer perceptron pattern classification system.
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where

dnet, 33, w,Of
= : I=1,2,...
30; 30

=W

(8.47)
mj
This is because all the other products w,,0, equals zero when [ s j. Therefore,

OF,
80" Z 8 net,, Wy (8.48)

Using the similar notation as that for the oj" [see Eq. (8.33)], we can define

= Tnel, (8.49)

aE¥
oy,

So, we obtain

OE* i
o =Y ok w, (8.50)

m

Combining Eqs. (8.36), (8.37), and (8.50) and with net; replaced by net,, we
obtain

oE* 30
730k dnet,

- (z: ok . w,,,,) f'(net,,) (8.51)

As mentioned previously, f'(net,) is the same as f'(net,). It has been denved
before as O" (1—- O" ) [see Eq. (8.38)]. So, the expression for the error signal a
for a neuron ina hldden layer is

of = Of(1 - of)(g ot - w,,,j) (8.52)

So far, we have analyzed these two possible cases. (1) When the neuron j is a
neuron in the output layer, we have a direct access to the error EX. We therefore
can find the error signal %, the sensitivity of the error on the activation of the jth
unit:

= (¢ = 0HOH(1 - 0h) (8.53)
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(2) However, when the neuron is a neuron in a hidden layer, the error Efisnota
direct function 0" And so we cannot directly differentiate the error function with
respect to O" and we have to apply the chain rule as shown in the above derivation
[see Eqgs. (8 45) to (8.52)], and 0 is in the form of

of = 0kl - 0})(% ok . w,,,_,) (8.54)

What we have discussed can be summarized as: The increment adjustment of the
weight Akw,-,-, which connects the neuron j of the second hidden layer to the
neuron i of the first hidden layer for the kth presented pattern, can be computed

by

k
Arw; = 10} Of (8.55)

or

Afwy; = n0OK(1 ~ 0")(20 m,)O" (8.56)

m

A flowchart for the back-propagation training learning of a multilayer perceptron
is shown in Fig. 8.7 and is self-explanatory.

83 A PRIMITIVE EXAMPLE

The flowchart shown in Figure 8.7 is used to illustrate the whole process of error
back-propagation learning, including both forward and backward passes. Initially,
weights are set randomly with small values. When a pattern is presented to the
system, the forward pass will compute a set of values at the output of neurons in
the output layer. Errors will then be evaluated by comparing these output values
with their desired values from the training set. Error back propagation then
follows to establish a new set of weights. These two passes constitute an iteration.
There may be numerous iterations for one pattern presentation, and the output
error should decrease over the course of such iterations. The same process will
repeat for all the prototypes in the training set in any order. When the prototypes
in the training set have all been presented, and the weights approach values
such that the output error falls below a preset value, the network is said to be
trained.
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Initialize training iteration counter
N=1

Chapter 8

[n=n+1

Forward Pass

L

Initialize weights Wj;, Wi, Wik
with small random values

Present input pattern z and
Compute layer’s responses

Compute output error
E«— % |t-0[

STOP
network]
trained

no
STOP
yes [Network did
N 2 Now not converge
?
no

Calculate errors
when j is a neuron in output layer,
of=(' -0ho(1-0))
Otherwise,

a'= 0 I-0M (Z on' » w,..,)
m

Backward Pass

Adjust weights of the output layer
with a'w; = n(f - 0hota - oho}

Otherwise, adjust the weights of the second

when J is a neuron in output layer

hidden first ludden layer with

m

FIGURE 8.7 A flowchart for the back-propagation leamning of a multiplayer perceptron.
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Example. Given that the following 50 pattern sample points belong to
class 1 (w)):

(2,12); (3.10); (3.15); (4,13); (4,17); (5,9) (5,12); (5, 16); (6. 10);
(6,15); (6,19); (7.9); (7.11); (7,17); (7.20); (8, 13); (8, 15); (8,21);
(9, 11); (9.16); (9.19); (10, 10). (10, 14); (10,20); (11.12); (11,17);
(11,19); (11,22); (12, 11); (12.13); (12,15); (12,21); (13, 18);

(14, 13); (14, 16): (14, 19); (14,21); (15.20); (15,23); (16, 14);

(16, 16); (16. 18): (16,22); (17,21); (17,15); (18, 18); (18, 20);
(18,23); (19, 19Y; (20.22)

and the following 52 pattern sample points belong to class 2 (w,):

(9,3); (9,5): (10,7); (11,4); (12,5); (12.8); (13,3); (13.9); (14,7);
(15.2); (15,5); (15.10); (16.7): (17,4); (17.9); (17,12); (18,6);
(19,8); (19.11); (19. 14): (20.4); (20, 12); (21,7); (21, 10); (21, 16);
(22.6); (22.14); (22.18): (23,9); (23, 12); (23, 17); (24, 7); (24 15);
(24,19); (25, 11); (25, 13); (25, 18); (26,9); (26, 16); (26,22);

(27, 14): (27.19); (28, 12); (28, 17); (28,21): (29, 15); (29, 19);

(29, 22). (30, 18). (30, 21), (31, 17); (31, 20)

use multiplayer perceptron with one hidden layer to separate the above two sets of
data. Write a program in C or C 4 + for this problem.

Solution. The perceptron network with one hidden layer is shown in
Figure 8.4. The initial values of w;, j =1, i = 1,2, 3, 4, were chosen as

Wy = 10, Wiy = 045, Wiy = 076, Wyg = 0.98
The initial values of v}, vy,, Uy, Va3, U3). U3), U4, and v, were chosen as:

v = O]. Ui = 03, Uy = 023, Uy = 08,
U3 = 056, Uyp = 043, Uy = 032, Vyp = 0.76

Since the multiplayer perceptrons is in the category of supervised learning, we
need to have some a priori information to train the system. Let us select some of
the pattern points from the data set as the input/output pairs. Note that the
selection of these pattern points as a training set is very crucial. It would make a
lot of difference in the results. The training set must be both large enough and
diverse enough to adequately represent the problem domain. Within each class
sufficient samples must be present to reflect real-world variations within the class.
To take care of this nonlinear problem, more pattern samples near the nonlinear
boundary of these two classes will be selected.
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FIGURE 8.8 One hidden layer structure perceptron.
The samples selected for the training set are
p1=(7,9); pi = (10, 10); p{ = (14,13); p} = (17, 15)
P =1(20,22); p} = (5,16); p] = (6, 19); pi(8,21);
Pl =(12,21); pi® =(20.22) from class 1

and

Py =(13,9); p2=(17.12); p3 =(9,5); pi = (15.10); p3 = (19, 14);
P3=(21,16); p) = (15,5); p} =(20,4); p5 = (22,6); pi® =(24,7)
from class 2

Run the program by presenting the samples in the training set (usually called
prototypes) as the input vectors in random order. Eventually the synapses (or
weights) stabilize to the values shown below:
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and

by = —0.2205; b, = 0.6205; vy, = 0.5794; vy, = —0.4506;

U3 = 00731, U3y = 00569, Ug; = —“14761, Ugr = —19160

Let us assume that the system has been trained. With these weight parameters
fixed for the system, present one by one all the patterns from the two data sets
listed above, and see how many of these patterns are correctly classified by the
system.

Results showed that two pattern points in w,, namely, (9, 5) and (10, 7),
were misclassified as w,; and four pattern points in w;, namely (17, 21), (18, 20),
(18, 23) and (20, 22), were misclassified as w,. Note that all these misclassified
pattern points in w; and w, are in the two extremity portions of circled regions. It
seems that we need to select one or two more prototypes over those regions to
improve the classification rate.

When another hidden layer was added to the network, the processing results
turned out nicely even with the same prototypes. All pattern points in w| and w,
were correctly classified. The two-dimensional plot shown in Figure 8.8 shows
the data distribution and the nonlinear boundary of these two classes. It is
expected that the processing described above could work very well for a problem
with two very large data sets in w,; and w,, so long as these two sets of data fall,

respectively, into their own category regions as depicted by the two curved
contours.

PROBLEMS

8.1 Prove that f'(net,) = Of(1 — O) in Eq. (8.38).
8.2 Work out couple of more iterations for the problem in Section 8.2.1
and see what changes happen in the weights.

8.3 Explain why we can use %le" |* as the mean-square criterion function
in Eq. (8.16).

8.4 Consider a multilayer network with N inputs, K hidden units, and M
output units. Write down an expression for the total number of
weights and biases in the network.

8.5 Given that the following two-dimensional pattern points belong to
class 1:
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Data set 1 (pattern points belonging to class w,):

(7, 14), (8, 10), (8, 11), (8, 13), (8, 15), (8, 16), (9, 9), 9, 14),
(9, 17), (10, 9), (10, 12), (10, 16), (10, 18), (11, 14), (12, 9),
(12, 11), (12, 13), (12, 17), (12, 20), (13, 12), (13, 16),

(13, 18), (14, 9), (14, 11), (14, 14), (15, 10), (15, 12), (15, 16),
(15, 19), (15, 21), (16, 9), (16, 13), (16, 15), (17, 10), (17, 18),
(17,20), (18, 15), (19, 10), (19, 13), (19, 17), (19, 21),

(20, 12), (20, 17), (20, 19), 21, 11), (21, 16), (21, 21),
(22,12), (22, 20), (23, 12), (23, 14), (23, 17), (23, 22),

(24, 13), (24, 15), (25, 13), (25, 18), (25, 22), (26, 15),

(26, 17), (27, 16), (27, 19), (27, 21), (28, 18), (28, 20).

and that the following two-dimensional pattern points belonging to
class 2:

Data set 2 (pattern points belonging to class w,):

(a)

(b)
()

(d)

(8,5),09,3),(9, 7, (10, 2), (10, 4), (10, 6), (11, 8), (12, 2),
(12,5),(13,3), (13, 8). (14, 6), (15, 2), (15, 4), (15, 8), (16, 5),
(17,3),(17,6), (17, 8). (18, 2), (19, 5), (19, 7). (19, 9), (20. 2),
(20’ 6)’ (217 3), (21 ’ 7)’ (219 9)! (221 5)1 (22’ 10)1 (23, 3)v
(23, 8), (24, 6), (24, 11), (25, 5), (25, 8), (25, 10), (25, 12),
(26, 4), (26, 7), (26, 13), (27, 11), (27, 14), (28, 6), (28, 9),
(28, 15), (28, 16), (29, 7), (29, 11), (29, 13), (29, 17), (30, 8),
(30, 15), (30, 17), (31, 10), (31, 16), (32, 13), (32, 15).
Write a program in C or C + + for a multilayer perceptron with
one hidden layer to separate these two sets of data. Select 15
pattern points from each of these two data sets as prototypes to
train the system and then test all the remaining pattern points.
Same as (a) but with two hidden layers.
Discuss your results obtained with respect to the choice of the
training set.

Develop a suitable training set to correctly separate all these two
sets of data.
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Radial Basis Function Networks

9.1 RADIAL BASIS FUNCTION NETWORKS

Use of multilayer perceptron to solve nonlinear classification problem is very
effective. Nevertheless, a multilayer perceptron often has many layers of weights
and a complex pattern of connectivity. The interference and cross-coupling
among the hidden units results in a highly nonlinear network training with
nearly flat regions in the error function which arises from near cancellations in the
effects of different weights. This can lead to very slow convergence of the training
procedure. It therefore arouses people’s interest to explore other better way to
overcome these deficiencies without losing its major features in approximating
arbitrary nonlinear functional mappings between multidimensional spaces. At the
same time there appears a new viewpoint in the interpretation of the function of
pattern classification to view pattern classification as a data interpolation
problem in a hyperspace, where learning amounts to finding a hypersurface
that will best fit the training data. Cover (1965) stated in his theorem on the
separability of patterns that a complex pattern classification problem cast in high-
dimensional space nonlinearly is more likely to be linearly separable than in a
low-dimensional space. From there it can then be inferred that once these patterns
have been transformed into their counterparts that can be linearly separable, the
classification problem would be relatively easy to solve. This motivates the
method of radial basis functions (RBF), which could be substantially faster than
the methods used to train multilayer perceptron networks.

225
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The method of radial basis functions originates from the technique in
performing the exact interpolation of a set of data points in a multidimensional
space. In this radial basis function method, we are not computing a nonlinear
function of the scalar product of the input vector and a weight vector in the
hidden unit. Instead, we determine the activation of a hidden unit by the distance
between the input vector and a prototype vector.

As mentioned, the RBF method is developed from the exact interpolation
approach, but with modifications, to provide a smooth interpolating function. The
construction of a radial basis function network involves three different layers,
namely, an input layer, a hidden layer, and an output layer. The input layer is
primarily made up of source nodes (or sensory units) to hold the input data for
processing. For an RBF in its basic form, there is only one hidden layer. This
hidden layer is of high enough dimensions. It provides a nonlinear transformation
from the input space. The output layer, which gives the network response to an
activation pattern applied to the input layer, provides a linear transformation from
the hidden unit space to the output space. Figure 9.1 shows the transformations
imposed on the input vector by each layer of the RBF network. It can be noted
that a nonlinear mapping is used to transform a nonlinearly separable classifica-
tion problem into a linearly separable one.

As shown in Figure 9.1, the training procedure can then be split into two
stages. The first stage is a nonlinear transformation. In this stage a nonlinear
mapping function ¢(x) of high enough dimensions is to be found such that we
will have linear separability in the ¢ space. This is similar to what we discussed
on the ¢ machine in Chapter 3, where a non-linear quadratic discriminant
function is transformed into a linear function of fi(x), i = 1,2, ..., M, represent-
ing, respectively, x3, %3, ... . Y2, X Xps Xy, oo vy Xy X, AN Xp, X500 x,; and f;(x)
are linearly independent, real- and single-value functions, which are independent
of w; (weight). Note that in this case the discriminant function d(x) is linear with
respective to w;, but £;(x) are not necessary assumed to be linear [see Egs. (3.35)
and (3.36)].

Let us come back to the radial basis function problem. The basis functions
used in this scheme are all localized functions. The parameters governing the
basis functions (corresponding to hidden units) can be determined by using
relatively fast, unsupervised methods. Some of these methods were discussed in

Input space Hidden unit space Output space
(of high enough dimension)
Input Nonlinear Linear output
— tranformation > tranformation

FIGURE 9.1 Radial basis function network.
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Chapter 6. In these methods, only the input data are used. The second stage of the
RBF network (i.e., from the hidden unit space to the output space) is a linear
transformation that determines the weights for the final layer. It is a linear
problem and is therefore fast also.

As mentioned in the previous paragraph, a radial basis function network is
a modification to the exact interpolation approach, in which the number of basis
functions is determined by the complexity of the mapping to be represented rather
than by the size of the data set. That is, the number of the basis functions is much
less than that of the pattern data points (M « N, where M is the number of basis
functions and N represents the number of pattern data points). With such an
argument, the centers of the basis functions will not be constrained to the input
data vectors. Suitable centers will be determined during the training process.

Let x be a d-dimensional input vector, t a target vector which is one-
dimensional, N the number of input vectors x", n=1,2,...N, and M the
number of basis functions in the hidden unit. A set of basis functions can be
chosen with the following general forms:

p(Ix —¢;)) 9.1)

The argument of the function is the euclidean distance of the input vector x from
a center ¢, This justifies the name radial basis function. Several forms for the
basis functions ¢ have been considered, namely,

$(x) = exp ( - 2—(1;5 Ix — c,-l”') (9.2)
o)

P(x) = m (9.3)

dx) =0+ >0 (9.4)

$H(x) =¥ Inx (thin plate spline function) (9.5)

The gaussian form is the most commonly used one. It is a localized basis

function. As [x] — 0, ¢ will approach zero as limit. The mapping of the radial
basis function network is

M
i(x) = Z} ijd)j(x) + Wy (9.6)
=
or
M
Yi(x) = Zowlg'(bj(x) with ¢y = 1 (9.7)
=

where y,(x) is the k&th component of y(x), the function to map the input space to
the one-dimension target space. y,(x) are obtained by linear superposition of the
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M basis functions. (pj(x), j=1,2,..., M are linearly independent, real and local
basis functions which are independent of the w; (weights). Note that the y(x) is
linear with respect to w;, but ¢,(x) are not necessarily assumed to be linear. For
the case of gaussian basis functions we have

i
¢;(x) = exp (— 7g2 % - c,lz) (9.8)
J

where ¢; is the center chosen for the jth basis function, ¢;(x). Note that centers
chosen need not be the same for the radial basis functions. In contrast, we set the
centers to different appropriate values determined through training. With values
so chosen for the individual basis functions, the processing speed will be
increased. This expression can be generalized as

¢,(x) = exp [ —ix - cj)T Y tx - cJ,)jI (9.9)
J

where x represents, respectively, the d-dimensional input vector with elements x,,
and ¢; is the vector determining the center of basis function ¢, and has elements
c;. Figure 9.2 shows the architecture of the radial basis function network. Hart
shows in his simulation (Hart 90) that a RBF should be of much high order. This

Input { |
Basis functions

FIGURE 9.2 Architecture of the radial function network.
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is due to the locality of the RBF activations which makes it necessary to use a
large number of centers to fill in the space in which g(x) 1s defined.

Let us take a simple example to show how does the method of RBF
perform the mapping of a nonlinear problem to a linearly separable class
problem. Figure 9.3 shows the positions of the pattern points x|, X,, X3, X4, X;s,
X4, X7, Xg and X, in space and the class each of them belongs to. x;, x, belong to
class A4, while the rest of them, X3, X4, X5, X¢, X¢, X7, Xg and X, belong to class B.
It is apparent from this figure that no single straight line exists that can separate
the two classes. That is, these two classes are not linearly separable. Properly
choose the centers, ¢, = 1.1 and o, =0, 0)", and the basis function
¢(x) = exp(—Ix — ¢;|*), i = 1, 2, assuming that 62 is the same for all the basis
functions and are left out in the following expressions. The corresponding ¢
resulting from the mapping is

exp(—Ix — ")
exp(—|x — ¢3|")

P(x) = (9.10)

For the pattern point x,(0, 0),
¢, = exp[—Ix — ¢/1’] = exp[—((x;, — c1))* + (¥ — €1,))]
= exp[—2] = 0.135

¢, = exp[—[x — c2{2] = exp[—((x}; — Czl)2 + (X1 — sz)z)]

=exp[-0] =1
B B B
x6(0,2) xg(1,2) x3(2,2)
o 8/’_\ B
oD P x2(L,1) x7(2,1)
A - _A'B B
x1(0,0) x5(1,0) x9(2,0)

FIGURE 9.3 A nonlinear two-class problem and the decision surface drawn in the
onginal pattern space. x; = (0, 0) and x; = (1, 1) in class A. x3 = (2, 2), x, = (0, 1),
x5(1,0), xg = (0, 2), x; =(2,1); x5 = (1, 2) and x4 = (2, 0) in class B.
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or

é' =1[0.135, 1}7 (9.11)
where ¢' represents the pattern point x, in the transformed space. Similar
notations (¢', d) , ¢°) are for patterns x; = (0,0), x, = (1, 1), X3 = (2, 2),

x, =(0,1), x5 = (1,0), X, = (0,2), x, =(2,1), xg =(1,2), and x9 = (2,0} in
the transformed space. For pattern point x, = (1, 1),

b, = exp[—IX; — ¢, 1}] = exp[—((xy; — ¢1,) + (xp — ¢1))]
=exp[-0] = 1;

¢, = exp[—ix, — c2|2] = exp|—((xy; — 021)2 + (xp — 022)2)]
= exp[—2] = 0.135

or
¢* =[1,0.135)" (9.12)

Similarly, we can compute all the ¢,’s and ¢,’s, respectively, for x3, X4, X5, X4, X7,
Xg, and xg as

¢ =[0.135,0.067)7 (9.13)
$* = [0.368, 0.368]” (9.14)
$° =1[0.368,0.368]" (9.15)
$° =1[0.135,0.183)" (9.16)
¢’ =[0.135,0.183]" (9.17)
4;8 [0.368, 0.0067]" (9.18)

= [0.368, 0.0067]7 (9.19)

Figure 9.4 shows the resulting pattern points’ positions in the transformed space.
Obviously, the two classes are now linearly separable. Any line drawn with ¢, ¢,
located on one side and rest of the ¢’s on the other side is a possible solution. The
simplest line

P+ —1=0 (9.20)

which is drawn with dashes as shown in Figure 9.4, is also a possible solution.

The corresponding decision surface in the input vector space is then represented
by

exp[—Ix — ¢, ] +exp[—|x — ;] - 1 =0 (9.21)

if the gaussian form of the basis function is adopted. Note that in this example the
centers were carefully selected (i.e., the RBF network was assumed to have
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] ¢1(0.135, 1)

0.25T 9,(0.135,0.183)
®.(0.135,0.183)

¢2(1,0.135)
0125“ 'Y

T

0(0.368, 0.0067)
(0.135, 0.067)
o 05(0.368, 0.0067)

.¢2

W

0.125 025 0.5 1

FIGURE 94 Decision surface built by an RBF generalized linear in the transformed
space of the problem shown in Figure 9.3,

already been well trained) to separate x, and x, as a class, and the rest of the data
points belonging to another class. But when patterns x; = (0, 0) and x¢ = (2, 0)
belong to one class, while the rest of the pattern points belong to another class in
another problem, the centers should be chosen as ¢, =x;, =(0,0) and
¢y = ¢y = (2, 0). In so doing, x; and x4 will be linearly separated from the rest
in the ¢ space. The reader can check it as a homework problem.

9.2 RBF NETWORK TRAINING

A two-stage training procedure for the radial basis function networks is adopted.
In the first stage, the unsupervised learning (or clustering) method on the input
data set [x] can be used to determine the parameters of the basis functions, for
example, ¢, and g, for the spherical gaussian basis functions considered above.
We then keep the basis functions fixed and find the weights during the second
phase of training. Suppose we have selected M centers for the RBF functions,
The problem then becomes a typical linear one in the M-dimensional space of ¢

exp[—|x — ¢, |2]

exp[—x — e4’]
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The output of the network can be computed as:
M
Yi(x) = 3wy (X) + wig (9.23)
j=0

in matrix form
y(x) = W7+ w, (9.24)

where W = (w;,) and ¢ = (¢;). All methods described in Chapters 2 to 4 can
now be recalled to estimate w, and W. Note that if the centers are not preselected,
they have to be estimated during the training phase.

In addition to adopting the clustering method for the first stage in the
training procedure as mentioned previously, the error minimization method can
also be used. Choose an appropriate cost function #:

N -
F = Z]f(e(j)) and () =d()) () (9.25)
j=

where y( j) and d(j) are respectively the computed and desired output of the
network; f(.) is a differentiable function (e.g., the square of its argument) of the
error; and N is the number of input/desired output training pairs [x( j), d(j),
J=12,...,N]. We can then follow the procedure of the gradient descent
methods as described in Chapters 2 to 4 for the training of the W, ¢,, and o

12 1Y

W,'(k—+-1)=w,«(k)—ﬁlg—§|, i=01,....M (9.26)
ci(k+1)=c,-(k)—,82%?l, i=0,1,....M (9.27)
ai(k+1)=ai(k)—[33%|, i=0,1,.... M (9.28)

where k& denotes the current iteration step. An alternative scheme such as the
pseudoinverse of ¢ can also be used.

9.3 FORMULATION OF THE RADIAL BASIS
FUNCTIONS FOR PATTERN CLASSIFICATION
BY MEANS OF STATISTICAL DECISION
THEORY

As discussed in Chapter 5 in the formulation of a pattern classification by means
of statistical decision theory, our goal is to model the a posteriori probabilities
plw;|x) for each of the classes. By Bayes’ rule, we can write:

p(x|w)p(w;)

9.29
p(x) 0:29)

plw;|x) =
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where p(x) = Y, p(X|w;)p(w,), i =1,2,..., M is the probability that x occurs
without regard to the category in which it belongs. p(w;) is the a priori probability
of class w;, and p(x|w;) is the likelihood function of class w,; with respect to x. It
is the probability density function for x given that the state of nature is w; (i.e., it
is a pattern belonging to class w,). p(w;(x) is the probability that x comes from w;.
This is a posteriori probability. By substituting >, p(x|w;)p(w;) for p(x), Eq.
(9.29) can be rewritten as

pxlo)
> pxlw)p(w)

Ploy|x) = p(w;) (9.30)

Representing p(x|w;)/ 3_; p(x|@;}p(w;) as ¢(x) gives
play|x) = plw;} - ¢ (x) (9.31)

Equation (9.31}) is in a single form of basis function network with p(w,) as the
weight from each hidden unit going to the corresponding output unit. The outputs
of this network represents approximations to the a posterior probabilities.

Suppose a common pocl of M basis functions can be used to represent all
of the class-conditioned densities p(x|w;). p(x|w;) can then be written as:

M
pxjw;) = XZIP(XIJ)P(H(U:) (9.32)
=

and p(x), which is Y, p(x]w;)p(e;), can be written in terms of p(x| j) and p( j|w,)
as follows:

M
px) =3 Z;p(xu)p(jlwi)p(w,-) (9.33)
[ =
M
= Xgp(xlj)Zp(jlw,-)p(w,-) (9.34)
J= i
M
= ZIP(XIj)p(j) (9.35)
J:

Substituting expressions (9.32) and (9.35) respectively for p(x|w;) and p(x) into
Eq. (9.29), we have

(e ) = D PEIPUI@IP(@) ©.36)
‘ Y p(xlj)p(J) '
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Multiplying both the numerator and denominator of the above equation by p( ;)
and rearranging, Eq. (9.36) becomes

M (jlwi)p(wi) I Np())
ployx) = [p : ] : [ } 9.37
‘ En 49) Zfil P )Hp( /) -3

or
M
Plw;ix) = Z:l wy - (X) (9.38)
j:

In other words, solution of the a posteriori probabilities p(w,/x) can be
represented in a radial basis function network form, and the output of the
network will give the a posteriori probabilities p(w;|x) for each of the classes.
The normalized basis function and the weights are, respectively,

5. (0) = —2ELP0)
J

= 9.39
> px1)p()) ©39)
= p(jIx) (9.40)
and
p(jlw;)p(w;)
_ 9.41
" () (©-41)
= p(w;l)) (9.42)

For more elaborated discussion on this subject see Lowe (1995) and Bishop
(1995).

94 COMPARISON OF RBF NETWORKS WITH
MULTILAYER PERCEPTRONS

Both the radial basis function (RBF) networks and multilayer perceptrons (MLP)
provide techniques for approximating nonlinear functional mappings between
multidimensional spaces. However, the structures of these two networks are quite
different from each other. Some of the important differences between the RBF
and MLP networks are outlined below.

1. An RBF network (in its most basic form) has one hidden layer, whereas
a MLP may have one or more hidden layers and a complex pattern of
connectivity. The interference and cross-coupling between the hidden
units in a multilayer perceptron can lead to slow convergence of the
training procedure.
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In multilayer perceptron networks, the activation responses of the
nodes are of a global nature, and the output is the same for all
points on a hyperplane, whereas the activation responses of the
nodes are of a local nature in the RBF networks in the sense that
output of each RBF node f(.) is the same for all points having the same
euclidean distance from the respective center ¢; and decreases expo-
nentially with the distance.

In a multilayer perceptron all parameters are usually determined at the
same time as part of a single global training strategy involving
supervised training, whereas an RBF network using exponentially
decaying localized nonlinearities to construct local approximations to
nonlinear mapping for the hidden layer achieves fast learning and
makes the system less sensitive to the order of presentation of the
training data.

PROBLEMS

9.1
92

Check the results shown in Figure 9.4.

Refer to the example given in the text. Choose the centers as (0, 0)
and (2, 0). Which pattern points will be separated from the others?
What conclusion you can draw from the example and this exercise?
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Hamming Net and Kohonen
Self-Organizing Feature Map

Among the real-world pattern classification problems there exists such a case that
we have more possible correct responses of the network than we are able to
incorporate. More specifically, when a network was trained to classify the input
signal into one of the several output categories, the response from the network
sometimes would assign the signal to two or more than two of the given classes.
To overcome such a case, additional structure should be added to help decide as
to which unit to respond so that only one neuron in the group will be enforced to
have a positive output while the rest of them turn to zero. This is commonly
called neural networks on competitive basis.

The Hamming net, Maxnet (Lippmann, 1987), and the Kohonen self-
organizing feature maps (Kohonen, 1987) are the networks to achieve this goal.
Hamming nets and Maxnet are for bipolar inputs, whereas the Kcohonen self-
organizing feature map is for continuous inputs. Let us discuss the Hamming net
first. After the discussion of the Hamming net, we will include Maxnet as a
second layer for the Hamming net to achieve the goal of winner-take-all.

10.1 HAMMING NET

The Hamming net is a maximum likelihood classifier or a minimum Hamming
distance classifier, which selects one of the stored classes that are at a minimum

236
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Hamming distance to the n-tuple pattern vector presented at the input. The
Hamming distance between two vectors 1s the number of components in which
these two vectors differ. Suppose that two binary bipolar #-tuple vectors have a
components agree and d components differ from each other; then d gives the
Hamming distance (HD), and a = n — HD gives the number of components in
which the vectors agree, where n is the total number of components in the vector.
When one of the vectors is the input vector x and the other one is the encoded
class prototype vector (say c,), the dot product of these twe bipolar binary n-tuple
vectors isa — d, or

x’ +¢, = (n—HD)—HD (10.1)
or
T n
1x' e, =§—HD(xT,c,) (10.2)

where HD(x7, ¢,) is the Hamming distance between the input vector x and the
encoded class prototype vector ¢,. Recalling that HD = n — a, Eq. (10.2) can be
put in the following form:
n
2
Let the network be a pattern classifier for M classes We then have M outputs, one
for each class. When the input x is known to belong to class w, with prototype
vector ¢,, then only the ith output of the network is 1. The rest of the network
outputs are zero.

Refer to the architecture of Hamming net as shown in Figure 10.1; outputs
of the neurons in the Hamming net are

a=4ix"-¢ + (10.3)

b

net, =x"+w +b j=12,....M (10.4)
where w, =[w;; w;, - wj,,]T. Combining Egs. (10.3) with (10.4), we can
then set b =n/2 and w, =4¢,j=1,2,.... M, or

Cip G2 Oy
[[|Cn € -0 Oy
W=— (10.5)
2
Cv1 Cm2 0 Cuy

and wﬁ:%cﬁ,iz L2,....mj=12,..., M.

The function of the second layer of the network as shown in Figure 10.1 is
used to enforce the initial dominant response of a node that has the largest
network excitation. When this Maxnet is initialised with the input vector y(0), the
network starts processing it by adding positive self-feedback and negative cross-
feedback. As a result of the Maxnet recurrent processing, only the node which has
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nf2
0,
X,
X, .
X= X, 0}
'rur—l .
X, .
0

m

Hamming net Maxnet

FIGURE 10.1 Hamming net with Maxnet as the second layer.

the largest initializing entry will be unsuppressed, and has the nonzero output
response, while all the remaining nodes responses decay to zero. Denoting the
output of the Maxnet as O, we have

0 =wjy

where y=[y, y, --- yyl' is the input to the Maxnet,
O0=[0, O, --- Oyl is the output of the Maxnet in Figure 10.1, and
w), is the weight matrix for the maxnet. A symmetric weight matrix for w,, with
diagonal entries as 1's and all the off-diagonal entries as —¢ was proposed by Pao
(1989) to simulate the lateral interaction:

Wy = L (10.6)

In this matrix ¢ is chosen in the range of 0 < ¢ < 1 /M. Let us choose ¢ = 0.2 for
the case when M = 3:

1 -0.2 -0.2
—-0.2 -0.2 1

An algorithm can be designed for the minimum Hamming distance classifier.
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Step 1.

Step 2.
Step 3.

Step 4.

Step 5.

Step 6.

Initialize the weight matrix w, and the biases:

(10.8)

For each input vector x, do steps 3 to 5.
Compute the net,, j = 1,2,...,M:

net, =b, + Y xw; i=1,2,...,.mj=12...M.
(10.9)

Initialize the activation y; for the Maxnet, the second layer of the
network:

y; = net;

which is the output of neurons in Hamming net, and also inputs to
the Maxnet. [t represents the Hamming similarity.

Maxnet compares the outputs of the net, j=1,2,..., M. It
enforces the largest one as the best match prototype, while
suppressing the rest of them to zero.

Recurrent processing of the Maxnet:

1 0.2 ... =02 ykl
~0.2 ~0.2|

O=wyy=
02 —02 .- 1 ¥

= wynet‘

where
net}
net' = | net
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and
f(net})

0 when net, < 0

— . k _
0 =] f(net) | flnet) = net, when net, > 0

f(ne-tM)"'
(10.12)

Example. Given that stored in a Hamming net are three prototype vectors,
respectively, representing the encoding of three characters C, H, and L with a
simple 3 x 3 matrix (see Figure 10.2):

c; = (1 1 1 1 -1 -1 1 1 1) Character C

e =(1 -1 11 1 b1 -1 1) Character H

e&;=(1 -1 -1 1 —1 -1 1 1 1) Character L
we are to find the prototype vectors that are closest, respectively, to each of the
following input bipolar patterns:

x; (1 1 1.1 1 =11 11

X (1 -1 =11 1 11 =1 1)

x;: (I -1 1 1 -1 -1 1 1 1)

Step 1. Use the prototype vectors ¢,, i = 1, 2, and 3, and set up the weight
matrix W of the Hamming net as:

1 11 -1 -1 1 11

|
w:%l —1 1 1 1 I 1 -1 1
]l -1 -1 1 -1 -1 1 1 1
and set
n 9
b=by=by=5=5

7wl T 7 3E
/) /a7l 4|56
W /) v Lals

C H L Codces

FIGURE 10.2 Characters C, H, and L and therr encoding with simple 3 x 3 matrix.
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Step 2.

Step 3.

Step 4.

Step S.

For the input vectorx, =(1 1 1 1 1 —1 I 1 1 do
steps 3 to 9.
Compute net,, j = 1,2, and 3:

net, = b, + Y _x;w,, i=1,2.....9

=24 1(0.5) + 1(0.5) + 1(0.5) + 1{0.5) + 1(-0.5)
+ (= 1)(—0.5) 4+ 1(0.5) + 1{0.5) + 1(0.5)
=8
nety = by + 3 x;wy;

= %—{— 1(0.5) + 1(—0.5) 4+ 1{0.5) + 1(0.5) + 1(0.5)
+ (=1)(0.5) + 1(0.5) + 1(—0.5) + 1(0.5)
=6
nety = by + 3 x;wy,
= %+ 1(0.5) + 1(—0.5) + 1(—0.5) + 1(0.5)
+ 1(—0.5) + (= 1)(-0.5) + 1(0.5) + 1(—=0.5)

+ 1(0.5)
=6

Initialize the outputs (i.e., the inputs to the Maxnet):

»(0)=8
»(0) =6
1 (0)=26

Maxnet compares the outputs of net,, j = 1. 2, and 3, and picks up
the largest one. Based on the computation results obtained in steps
2 and 3, i.e,, ¥,(0) > »,(0) and y;(0), it appears that unit y, of the
Hamming net gives the best match prototype vector ¢; for the
input vector:

x=( 1 1 1 1 =1 11 1)

Maxnet then starts to enforce this largest one as the best match
prototype and suppress the other two is zero.
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Step 6. Recurrent processing of the Maxnet follows: & = 0.

I =02 -0.2(;8 5.6

net’ = | —0.2 1 —02]|6|=13.2
—02 —0.2 1 1l6 3.2
5.6
v = f(net") = [3.2
3.2
Step 7. k= 1.

1 =02 -02756 4.32

net' =|—02 1 —02l|32|=|144
—02 —02 1 32 1.44
432
y' = f(net') = | 1.44
1.44
Step 8. k=2
I —02 —0.2]4.32 3.744
net: = —0.2 | —-0.2({1.44|=]0.288
—02 —02 1 ||1.44 0.288
3.744
y' = f(net®) =|0.288
0.288
Step 9. k =3.
1 =02 —0.2]||3.744 1.592
net' =|—02 1 —0.2(/0288|=|-0.5184
—0.2 -0.2 1 {|0.288 —0.4684
1.592
y'=fmeth=| 0
0

The above result shows that the Hamming net with Maxnet has
eventually and successfully located the best-matched prototype
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vector ¢, for the input vector, and identifies the unknown input
pattern as character C.

Let us repeat the above steps for the vector
=01 -1 -1 1 -1, 1 1 1 1,
do steps 3 to 9.
Step 3. Compute net;, j = 1,2, and 3:
net, = b, + > xwy, i=1,2....9

=3+3%x05=6
net, = by + Y x;uy,

=243%x05=6
nety = by + ) x; Wy,

=%+7X0.5:—'8

Step 4. Initialize the outputs:

»i(0) =6
»{0) =6
1(0) =8

Step 5. Maxnet compares the outputs of net, and enforces the largest one.
Since y3(0) > y,(0) and »,(0), the Hamming and Maxnet will find
that unit y; has the best match prototype vector ¢, for the input
vector:

x=(I -t -1 1 -1t =1 11 1)
Step 6. Recurrent processing of the Maxnet follows; k = 0.

1 -02 —o0.2]ll6 3.2
net’ = —0.2 I —02[|l6|l=|32
—02 —02 118 5.6
3.2
y = f(net") =132
5.6
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Step 7. k=1
1 ~02 —02]|32 1.44
net' = | —0.2 1 —=02((32]=144
—-0.2 -0.2 1 {]5.6 4.32
1.44
y: = f(net') = | 1.44
4.32
Step 8. k=2.
1 =02 —=021]1.44 0.18
net? = | —0.2 1 —02]|[1.44]=10.18
—02 -02 1 114.32 4.28
0.18
v} = f(ne€) = |0.18
4.28
Step 9. &k =3.
1 —02 -0.,2]|l0.18 —0.71
net’ = |—0.2 1 —02(]0.18(=|-0.71
—0.2 —-0.2 1 |14.28 4.21
0
y* =f(met’) =| 0
4.21

The result shows that the best-matched prototype character vector
is L, and the unknown input pattern is identified as character L.

Let us repeat the computations for the vector
x,=(1 -1 =1 1 1 1 1 =1 1),

do steps 3 to 10.
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Step 3. Compute net, for j = 1.2, and 3:
net1:b1+z,\‘,—W1, I:1.2 ..... 9
=3-05=4
netz = b2 + Zx,'W2,~
= %Jr 5x05=7

llet3 = b3 + Z'YiW3i
i

=3+05=5.

Step 4. Initialize the outputs:

y1(0) =4
y2(0) =7
y3(0) =35

Step 5. Maxnet compares the outputs of net, and picks up the largest one.
Since y,(0) > y,(0) and y;(0), the Hamming and Maxnet will find
that unit y, has the best match prototype vector ¢, for the input
vector:

x=( -1 11111 -1 1

Step 6. Recurrent processing of the Maxnet follows; & = 0.

1 =02 -021l4 1.6
net’ = | 0.2 1 —02i7|=152
—0.2 —02 I |5 2.8

1.6

y! = f(net)’ = | 5.6

2.8

Step 7. k= 1.

1 —02 —0.2[{1.6 0
net! = |—0.2 1 —0.2]|5.2|=432
—02 —02 1 ||28 1.44

0

=l

y> = f(net') = | 4.32
1.44
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Step 8. k= 2.
1 =02 —02]l0 —1.15
net: = | —0.2 1 —02(4321=| 4.03
—-0.2 -0.2 1 |{1.44 0.58

—1.15
Y =fmet?) =| 4.03

0.58
Step 9. k =3.
1 =02 —02]|-1.15 -2.07
net’ = | —0.2 1 =02l 403|=| 4.14
—02 -0.2 ] 0.58 0
-2.07
y'=f(net’) =] 4.14
0
Step 10. £k =4.
1 02 —02]||-2.07 =29
net'!=|-02 1 —02|l 414|=| 455
—-02 —-02 1 0 —0.41
0
y' = f(net') = | 4.55
0

The best-matched prototype character vector ¢, is found. This helps identify the
unknown input pattern as the character H. Note that the number of steps involved
in the recurrent processing of the Maxnet for each input pattern may not be the
same.

10.2 KOHONEN SELF-ORGANIZING FEATURE
MAP [KOHONEN, 1987]

What we have discussed so far assumed that the synapses w, are not inter-
connected. As a matter of fact, this assumption is not really valid according to the
research from the physiologists and psychologists. Many biological neural
networks in the brain are found to be essentially two-dimensional layers of
processing neurons densely interconnected. Every input neuron 1s connected to
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every output neuron through a variable connecting weight, and these output
neurons are extensively interconnected with many local (lateral) connections. The
strengths of the lateral connection depend on the distance between the neuron and
its neighboring neurons. The self-feedback produced by each biological neuron
connecting to itself is positive, while the neighboring ncurons would produce
positive (excitatory) or negative (inhibitory) action depending on the distance
from the activation neuron.

These networks assume a topological structure among the cluster units.
They are known as the self-organizing feature maps (SOFM), or topology
preserving maps from the fact that the weights (from mput node i/ to output
node j) will be organized such that topologically close nodes are sensitive to
inputs that are physically similar. Output nodes will thus be ordered in a natural
way. The low-level organization in this feature map is generally predetermined
while some of the organization at higher levels is created during learning by
algorithms that promote self-organization. In this sense Kohonen (1982) claims
that this self-organizing feature map is similar to those that occur in the brain.

The Kohonen self-organizing feature map (SOFM) is based on competitive
learning. The output neurons of the network compete among themselves to be
activated or fired. Through training of the network, the single excitations of points
would successfully map into single peaks of neuron responses at positions
directly above the excitation, thus causing the feature array to self-organize.
That is, when a neuron wins on the current input vector x, al/ the synapses in its
neighborhood will be updated resulting that only one output neuron is on at any
one time.

The self-organizing feature map (SOFM) algorithm developed by Kohonen
(1987) serves such a purpose to transform an incoming signal pattern of arbitrary
dimension into a one- or two-dimensional discrete map and to perform this
transformation adaptively in a topological order fashion. Figure 10.3 shows the
architecture of a Kohonen self-organizing feature map.

The way of inducing a winner-takes-all competition among the output
neurons is to use lateral inhibitory connections between them. Figure 10.4 shows
a one-dimension lattice of neurons with both feedforward and lateral feedback
connections. X = (x|.x5...... v,) in Figure 10.4 is the external input excitation
signal applied to the network, where » is the number of input terminals and Wil
Wi oo w;, are the corresponding weights of neuron j. The lateral feedback is
usually described by a Mexican hat function, as shown in Figure 10.5. From these
two figures, we can see that some feedback are positive when the neurons are
within the range as indicated by (1) in Figure 10.5, while some feedback are
negative when they are farther away from the region as indicated by (2) in the
figure. In the area indicated by (3), weak excitation is usually ignored.

To consider the lateral interaction, let us use 7, ... .. Yol Ve s
Ve Vi to denote the lateral feedback weights connected to neuron J.and v,
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QOutput

Input

Input layer Output layer

FIGURE 10.4 A one-dimensional lattice of neutrons with feed forward and lateral
feedback connections.
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lateral excitation

area of weak area
excitation
® ®© ®
R —— —

<o/ @

inhibitory
action

FIGURE 10.5 The Mexican hat function of lateral- and self-feedback strength.

Yoo, ¥,, to denote the output signals of the network, where the subscript m is
the number of neurons in the network. The output response y; of neuron j in the
output layer is then composed of two parts; one part 1s from the input signal (the
external stimulus signal 9;) on the neuron j of the network, that is,

szgwﬁx, i=1.2...., n (10.13)

fmd the other part is from the lateral interaction of neurons (p; = Zf:- K TkY; i)
in the output layer. Some of them are excitatory, while some are inhibitory
depending on which part of the Mexican hat area they are located. The output
response of neuron j of the network y; is then

K
}fl- :f(l(‘)/ + ,\Z Ai‘_i/\‘yi+[\') _} = 1. 2,...., M (1014)
r=—K

or

n N
¥; -——f( Z} Wik, + Y 7‘;‘k.‘fi+1<) Jj=1.2 ... M (10.15)
= k=—K

where f(.) is a nonlinear limiting function. The iteration process will be carried
out to find a solution for this nonlinear equation. The output response of neuron ;
at (t + 1)st iteration is

K

_xf,(t+1)=.f'[lii(r+1)+eck2,~;jky,~+x(r)] j=12..... M (10.16)

where ¢ 1s the discrete time and x is a feedback factor to control the rate of
convergence of the relaxation process. ;; in the above equation is the feedback
coefficient as a function of interneuronal distance.
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Referring to Figure 10.4, there are m cluster units arranged in a linear array
structure. This network is to cluster N pattern vectors: X, = (x|, Xz, ..., X)) s
k=1,2,...,N into these clusters. w, = (w;;, Wy, ..., wy,,)T,j =1,2,..., M,
where w; is the synaptic weight vector of neuron j in the output layer.

To find the neuron in the output layer that will best match the input vector
X, we simply compare the inner products ijx forj=1,2,..., M and select the
largest one.

The above best-matching criterion is equivalent to the minimum euclidean
distance between vectors, or

IX ~w,;| = min |x — w,] i=1,2....,.M (10.17)

when neuron j is the neuron that best matches the input vector x, where |x — W
is the euclidean norm of the vector. This particular neuron j is called the best
matching or winning neuron for the input vector x. By using this approach, a
continuous input space is mapped onto a discrete set of neurons,

Searching for the minimum among the M distances [x — w;l,

i=1,2,...,M is equivalent to finding the maximum among the scalar w’x,
i=1,2...,M, or
wfx:maxi(w,rx) i=1.2,....M (10.18)

ijx will then be the activation value of the “winning” neuron. After the winning

neuron has been found, the synaptic weight vector w, of neuron j should be
modified in relation to the input vector x so that it becomes more similar (or
closer) to the current input vector. That is, the weight of the winning neuron
should be changed by an increment of weight in the negative gradient direction.
Using the discrete time formulation, Aw;(¢) is therefore:

Aw,(r) = BI(x(r) — wiD)] (10.19)
and the weight w, can be updated by following the following rule:

w1+ 1) = w;(1) + B(A]x — wi(1)] when j is the winning neuron
w(r+ 1) = w,(1) when i # j

(10.20)

where w;(¢) is the synaptic weight vector w, of neuron j at discrete time f;
w,(t + 1) is the updated value at time # + 1; and p(#) is the learning rate control
parameter and is varied dynamically during learning for best resuits.

Figure 10.6 shows two planar arrays of neurons with rectangular and
hexagonal neighborhoods. Input x is applied simuitaneously to all nodes. The
spatial neighborhood A, is used here as a measure of similarity between x and w,.
Following the argument of the winner-take-all, the weights affecting the currently
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FIGURE 10.6 Neighborhoods around a winning neuron j. (a) Rectangular grid; (b)
hexagonal grid.

winning neighbourhood A, undergo adaptation at the current learning step; other
weights remain unchanged.

The radius of A, should be decreasing as the training progresses,
Ai(t)) > Af(n) > Ajley) -+ where 1 <t <ty <---. The radius can be very
large as learning starts, since it may be needed for initial global ordering of
weights. Toward the end of the training, the neighborhood may involve no cells
other than the central winning one.

Kohonen Self-Organizing Feature Map (SOFM)
Algorithm

Step 1. [Initialization: Initialize weights w;;. To start with, randomly set
these weights from input (# in number) to outputs (M in number)
as small values. Set topological neighborhood parameters A, (?).
Set the learning rate parameter f(¢) in the range from 0 to 1.
While stopping condition is false, do steps 2 to 8.

Step 2. Similarity matching: Find the best matching neuron (winning
neuron j) of the output layer at time ¢ for each input vector x. Do
steps 3 and 4.

Step 3. For each neuron j,j=1,2...., M of the output layer, compute
the euclidean distance d; between the inputs and the output
neuron j with

a) = Xl =x0F  j=1.20....
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where x(1), i=1,2,.... n, is the input to node / at time ¢,
and w(¢) is the weight from input node / to output node j at
time ¢.

Step 4. Use this distance measure to select the output node with mini-
mum d, as the winning neuron.

Step 5. Update the synaptic weight vector of all neurons within a
specified neighborhood of the winning neuron through the
following iteration [see Eq. (10.20}]:

wi(t) + pO[x —w; (D] J € Ay
wi(t) otherwise

(10.21)

wj(t—|— 1) =

or

wit + 1) = wy(8) + BO[x (1) — wy ()] i=1,2,....n
(10.22)

where A,,(7) is the neighborhood function centered around the
winning neuron; f(r) is a learning rate control factor, and
decreases with time. It ranges from 0 to 1.

Step 6. Update learning rate f(f).

Step 7. Reduce the radius of A, (7). j is assumed to be the winning
neuron in this algorithm,

Step 8. Test stopping condition and continue with step 2.

From the procedure described above, it can be seen that this process of
feature map forming is similar to the K-means clustering algorithm. No
information concerning the correct class is needed during adaptive training.

Let us close this chapter with an example given by Kohonen. His example
is for the mapping of a five-dimensional feature vectors. Figure 10.7a shows the
training set samples of 32 different (five-dimensional input vectors labeled 4 to Z
and 1 to 6. There are 70 neurons in the rectangular array. This array was tratned in
random order with vectors x, to x; and x; to x4. The subscripts denote the
alphanumeric from 4 to Z, and | to 6. The learning rate control parameter
decreases linearly with & from 0.5 to 0.04. After 10,000 training steps, the
weights stabilized. When vector x, was input, the upper right corner neuron from
Figure 10.7b produced the strongest response and was labeled Z. When vector x4
was input, the leftmost neuron of the second row produced the strongest response,
and so forth. With these 32 five-dimensional vectors input to the network, 32
neurons were therefore labeled as shown in the 7 x 10 rectangular array. For
details of this example see Kohonen (1984). The mathematical operation involved
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Pattern

ABCDEFGH!IJKLMNOPQRSTUVWXVYZ12345%6
Components
Ay 1234533333333 333333333333¥3333333
X2 0000O0OTI1Z23453333333333333 3333333321
X3 0000O0COODOUOOCT1 2345678333 666662666 6¢6¢6
X4 000GOCGOO0OOOOOCOOOOOCOOO0OTI 234123 42712121221
s 0000CO0OO0OOOO0OO0COOCOCOOCOOO0OOOOCOO0O0O0OO0CO0OCT1 23456
(a)
B C DE * Q R *Y Z
A * * % % Pp % *x Y %
* F* N O * W * *x 1
* G * M O x * x ) *
H K L* T U * 3 *» *
LI A B . S A . 4 =
* ] *x & * x y * & g

(b)

FIGURE 10.7 Sample results for self-feature mapping. (a) List of five-dimensional
pattern data; (b) feature map produced by SOFM. (From Kohonen, 1984.)

in SOFM is enormous. Highly parallel processing techniques need to be
developed.

PROBLEMS

10.1 Repeat the example given on page 240 respectively with ¢ = 0.3.
Compare their effectiveness n terms of number of cycles needed to
suppress the weak nodes to zero.

10.2  Assume that the four characters A, E, P, and Y can be represented,
respectively, by 3 x 5 matrices, as shown in Figure P10.2. Design a
minimum Hamming distance classifier (with maxnet as the second
layer in the classifier) to classify them.

FIGURE P10.2
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10.3 Write a program in C for a minimum Hamming distance classifier
(with maxnet as the second layer in the classifier) to classify all the
printed numerals, 0, 1,2,...,9. Assume that they are represented
with 5 x 7 matrices, as shown in Figure P10.3. The program should
read input from S x 7 array into an x vector (a 35-tuple).

FIGURE P10.3

10.4 Consider a Kohonen self-organizing map with four cluster units and
two input units, as shown in Figure P10.4. The initial weights were
randomly set as follows:

wy, =03 W, = 0.6
wy = 0.5 wy, = 0.8
wy = 0.5 wy, =04
wy = 0.8 wy = 0.3

Output

FIGURE P104
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10.5

(a) Find the cluster unit y that is closest to the input x = (0.5, 0.3).

(b) Find the new weights for the winning unit when the learning
rate ¢ is chosen as 0.1.

(c) Find also the new weights for the other three cluster units.

(d) Repeat (a) when a leamning rate of 0.3 is used.

Write a computer program to implement a Kohonen self-organizing
map neural net. Use the data shown in Figure 10.7 to test your
program.
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The Hopfield Model

111 THE HOPFIELD MODEL

The Hopfield model is one type of iterative (or recurrent) autoassociative
network. It is a single-layer net with connections among units to form a closed
loop. The output of each processing element (neuron) is fully connected to the
inputs by weights. Positive weights are excitatory and will strengthen connec-
tions; negative weights are inhibitory, weakening connections. This feedback
provides full trainability and adaptability, and the iterative (or recurrent) operation
provides the necessary nonlinearity. With such a design, this net could retrieve a
pattern that was stored in the memory to respond to the presentation of an
incomplete or noisy version of that pattern. In this sense the Hopfield net was
claimed to possess a property close to the brain.

In this model Hopfield (Hopfield, 1986) presents memory in terms of an
energy function. He incorporates asynchronous processing for an individual
processing element (neuron) so that for a given instant of time, only a single
neuron updates its output. In other words, under asynchronous operation of the
network, each element of the output vector is updated separately, while taking
into account the most recent values for the elements that have already been
updated. This asynchronous operation, other than the synchronous operation, is
really needed for the net to work properly. Otherwise, the system would not
stabilize to a fixed state. Kamp and Hasler (1990) have shown that if the

256
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synchronous state updating algorithm is chosen, it can lead to persistingly cycle
states that consist of two complementary pattern states rather than a single
equilibrium one, and these two complementary patterns correspond to identical
energy levels. With proper system architecture designed and weights carefully
selected for the model, the net could recall the desired response pattern when
given an input stimulus that is similar, but not identical, to the training pattern.

Figure 11.1 shows a schematic diagram of a Hopfield net. It is a single-
layer feedback neural network. In this diagram x =[x, x, --- x,]is the n-
dimensional input vector, y =1[y; », --- »,]is the output, and uj, u,, ...,
u, are nodes representing the intermediate status of the output during iterations.
The nodes contain hard-limiting nonlinearity. Binary input and output take on
values +1 and —1. From this diagram we can see that there are feedbacks from
the output of each node to all other nodes except itself during the iteration
operation. These feedbacks are through the weights w;; (from output of node i to
input of node j; 7,y = 1,2,...,n; and i # J). w; specifies the contribution of the
output signal y; of the neuron i to the net potential acting on neuron ;. The net has
symmetric weights with no self-connection, i.e.,

wy; = w; (11.1)
and
Wy =0 (11.2)
L4
Y e .
- r K
1414
X2 -@4—-——_-‘ .Vz
: 4:rﬁ-4 :
: o= :
X, -3
’ -
“"-]('\(—//’“‘:-—"‘L -vz-l
An-1 P !
Xn ‘ 7M f‘//“ ¥

FIGURE 11.1  Architecture of the Hopfield net.
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The net potential net, acting on the neuron j is the sum of all postsynaptic
potentials delivered to it, as illustrated in Figure 11.1, or

netjzgwjyi+xj—9j i=1,2,....m)#i (11.3)

17t

where x; is the external input to neuron j and y; is the output of the neuron
Lhi=1,2,..., n,j # i. 0; is a threshold applied externally to neuron ;. As stated
at the beginning of this section, only asynchronous updating of the units is
allowed to ensure the net converging to a stable set of activation. It follows that
only one unit updates its activation at a time.

When we want to store an information (say pattern x) to the network, we
apply the pattern x =[x; x, --- x,] to the net. The network’s output
y=[ » -+ y,] will be initialized accordingly. After this forward proces-
sing, the pattern x = [x; x, --- x,] initially applied as input to the net is
removed. Through the feedback connections the initialized output
y=[ » -+ »] will become the updated input to the net. The first
updated input forces the first updated output. This, in turn, produces the
second updated input, and the second updated output response. This sequential
updating process continues. When no new updated response is produced, the
updating process will terminate. The network is then said to be in equilibrium.
The output vector shown at the output will be the stored vector that most matches
the input vector Xx.

11.2 AN ILLUSTRATIVE EXAMPLE FOR THE
EXPLANATION OF THE HOPFIELD
NETWORK OPERATION

Let us first explain the process by means of a numerical example and then
generalize the process. Use a 5 x 5 matrix to code the alphanumeric characters
from 4 to Z and 0 to 9. The code for the character C is

111 1=1-1-1-1 1-1-1-1-1 1-1-1-1-1 11111]
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*

*

02 03 04 05

01

10
15
19 20

22 23 24 25

06 07 08 09

12 13 14
17 18

11

*

16
21

*

*

(b)
1—1-1-1-1

(a)

11111]

1 —-1-1-1-1

1 —-1-1~-1-1

11111

(c)

FIGURE 11.2 A 5 x 5 matrix for alphanumeric character coding. (a) Coding scheme;

(b} character C; (c) codes for C.

(see Figure 11.2). For the case where only the binary code for character C 1s

stored in the net, the weight matrix is:

Derivation of the above weight matrix will be discussed in Section 11.3. Let us

use this weight matrix for the time being. Suppose we have here three noisy

patterns, namely.



260 Chapter 11

Noisy pattern 1. A noisy character C and its encoding. The signs A and 1
indicate, respectively, the noise on the character image and also at its

codes.
* A ok kX
* A T
e A XIZ[IIIIIl~lfll—Il——]l—l—ll—l-l~lf—lIllll]
R 1 1

o ok kR

Noisy pattern 2. A noisy character C and its encoding.
* %k Xk Kk ¥

« A T

. A Xzz[lllllllf—t~]—llﬁl—ll—ll~ll-lfllllll]
. A 1 1 1

*

L I S BN

Noisy pattern 3. A very noisy character C and its encoding.

L

* A r
- =1t -1 -1 -1 1=t -1 -11-11-11 171110

A
* A A 1 1 ) i
L I

Let us present the noisy pattern 1,
XI=p1111 10111 TSP 1Sl T

to the network and see whether it can recognize it. The output of the network will
be xIW. It is

XIW=11111 11111 1-11-1-11-1~1-1-1 11111W
After the activation of the signum function, output of the net is

y = sgn(x{ W}
<1111 1-1-1-1-1 1-1-1-1-11-1-1-1-1 1ttt11)
where sgn is the signum function and is
+1 if x'W >0
-1 if x’W <0

Thus. when the input noisy pattern

sgn{x'f"W} =

XT:Hllll 1-1-11+-1 1-11-1-11-1-1-1-1 11111]

is applied to the input of the network, the net produces the “known” pattern
vector

Mr11t 1-1-1-1-11-1-F-1-11-1-1-1-111111]
which was stored in the network, as its response, thus recognizing the noisy

pattern as the character C.
Let us try noisy pattern 2,

XL =@11111 11-1-~1-1 Il -1 -11-1 1-11-1-1 11111]
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The output of the network will be xJW:
X;W:[lllll LL—1—1 -1 1-1-11-=11-11-1 -1 1111 1w,
and the output of the net after the operation of the hard limiter activation is:

y =sgn{x; W)

=0 11111-1-1-1-11-1-1-1-11-1-1-1-11111%
As with the first testing input, the net recognizes the noisy pattern vector 2,

Xp=[1 1111 11 -1-1-%1-1-11-01-11-1-111111]
as the “known” pattern

P11 =1 =1 ~1-11~1-1-1—-11-t-1-1-1111%11)

after the hard limiter, and identifies it as character C. This is also correct.
Let us try the third unknown pattern,

Xg:[lllll 1 -1 -11 -1 1-11-1 -1 1-11-111111]1].
that has more noise on it. The output of the network y = sgn{x] W} after the hard
limiter is

T
y =sgn{x; W}

=pt11t1ti1-1-tt1-11-11-1-11-11-111T1111W

or

y =sgn(x] W)

=0 i P11 1 -1 -1 -1-=11-1-1-1=11-1-1-1-111111

Again, the net produces the known pattern at the output. It means that the net still can
recognize this unknown input pattern as character C even when it is very noisy.

11.3 OPERATION OF THE HOPFIELD NETWORK

From the testing results obtained from the illustrative example, it is obvious that
the kernel of this process is to select the appropnate weight matrix. Keep in mind
that in the Hopfield net (Figure 11.1) output of each neuron is fed back to all
other neurons and that the weight matrix used i1s a symmetric matrix with zero
diagonal entries. We also remember that this model is to recall the desired
response pattern when presented an unknown pattern that is similar but not
identical to the stored one. We can then summarize that in the operation of the
Hopfield network there exist two phases, namely, the storage phase and the
retrieval phase.

Storage phase.  Suppose we like to store a set of / bipolar pattern vectors,
S, u=1.2,...,1 as the patterns to be memorized by the net. According to
Hebb’s postulate of learning [Hebb 1949], the synaptic weight connected from
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neuron 7 to neuron j is given as

1!
uﬁ:;Zs“jsw u=12.....0L j=1,2,...,n (11.4)
=1
where 1/n is the constant of proportionality for the » x n synaptic weight matrix.
It is so used here to simplify the formulation of the weight matrix expression. w,
1s set as zero for the Hopfield network in the normal operation. Equation (11.4)
can then be put in matrix form:

1J k
W=-3ss —~1 p=12..1 (11.5)
nﬂzl n

13
with itself, I is an identity matrix; and / is the number of the pattern vectors stored

in the memory. The weight matrix as obtained in previous section with character
C stored to the net was exactly obtained in this way [see Eq. (11.5)].
When we want to store few more characters, say H, L, and E, into the net,

the memory will have four stored coded pattern vectors and the weight matrix
becomes

W = L[S S{ + SySh + S, ST +SeSE1 — 21 (11.6)

where S, is the pattern for character C stored in the net, and S-S has been found
as:

where W is the weight matrix; s,s, represents the outer product of the vector s,

| I A S B | [ B B 1 -1 -1 =1 ~1 1 -1 -1 =1 -1 1
| I S S S| 1 -1 -1 -1 -1 1 -1 -1 =1 -1 1 -1 -1 -1 -1 1
[ AU TR T B 1 =1 =1 =1 =1 -1 -t =1 =i 1 -1 =1 ~1 =1 |
| I R R B I e R I -1 =1 -1 -1 I e e 1
[ N R I =1 =1 -1 ~1 t -1 -t -1 -1 [ R e B | i

1

=1 1
-1 1
Po-1 1
=11

1 !
-1 1
=11
1 -1 1
I -1 1

A S T I -1 -1 =1 -1 1 I =1 =1 -1 -1 | |
| N N I -1 —1 -1 ~I 1 I -1 -1 =1 =1 | S S
[ O T I -1 -1 -1 =1 -t =1 -1 -1 =1 -1 ~1 =1 [ A l]
[ R T 1 -1 -1 =1 =1 1 I =1 -1 -1 -1 { I S B
[ R R B 1 1 | I S
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(11.8)

Similarly, S,; stands for the pattern for character H. S,;8; is then

The Hopfield Model

or
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Let us consider only two characters C and H stored in the net for illustration. The
weight matrix Wy is then

1 2
_ T T
Wep = (g [ScSc + SuSul — 3 I (11.10)
or
0 000 0 1 l—-l—-1=1 6 1 00 0 0 1-l-L-1l 0 1 0 0 0 I
00 I I 1 0 0 0 0 -1 0-l-1-1-1 020 00-1 ¢ 1 L 1 0
0 0 1 0 | 0 0 0 0 <1 0~ =l 1= 000 H-1 0 1 1 1 0
¢ 1 1 0 0 0 0 06 0 ~1 0 -1 =l-1-1 0 006 0-1 0 1 1 1 0
1 086 0 0 l—=l-t=1 0 1 0 6 0 0 1-t~1-1 0 18 0 0 1
1 0 0 0 1 0-l—-1—=1 0 10 0 0 0 1| -1l—-1-1 0 0 0 o0 1
-1 0 0 0 -1 -1 0 1 | 0 -1 00 0 0-1 111 6= 040 0-=1
-1 0 0 0 -1 -1 1 0 1 0—-1 00 0 01 1 1 1 0=1 00 0=
4 9 0 0 -1 -1l I 1 0 06 -1 000 0-1 11 110= 00 0=l
0-1 -1~ ¢ 0 0 0D 0 0 0 1 1 1 1 00 0 0 1 0-1-I-1 0
I 6 6 0 1| 1-1-1-1 0 0 0 6 0 0 §I—-1-1-1 010206 0 1
Ilo-1-1-t 9 0 6 0 ¢ 1 0 0 1 [ 1 0 0 0 0 1 0-1—-1-1 0
Wepy==0-1-1-1 0 00 0 0 1 0 1 6 1 1 0000 | 0-1-1-1120
S5locr-1=1 0 00 0 01 0 1 1 0 1 00 00 1 0-l-I-1 0
0-t-1-1 ¢ 6 0 0 06 1 ¢ 1 1 10 060 0 0 1 0-1-1-1 0
10 0 0t 1-l-1=1 0 106 0 0 0-1-1-1 0 10 0 0 1
-1 0 0 0-1 -t 1 L 1 0 -1 0 00 01011 0-1 020 0-l
1 0 0 0-1 -1 1 1L 1 0-100 0 0-1120120=1 00 0=t
1 00 0-1 -1 I 1 1 0 -1 0 06 0 01 1 1 0 0= 00 0-1
0-1-1-1 0 0 0 0 0 ! 0 1 1 1 1 006 00 0-1-1-1 0
1 9 0 0 1 1-l-1= 6 1 000 0 1-l—-t-I 0 00 0 0 I
O 1 1 1 0 0 0 0 0-1 0-l-l~l—-1 0 0 0 0-1 0 0 ! 1 0
6 1 1 1 0 0 0 0 0-1 0~ -1=-1=-1 000 0~ 0 1 0 1 0
0 1 1 1 0 00 0 0—-1 0~l-1=-1-1 0006 0=1 0 1 1 0 0
i 006 01 1-i-1-1 0 10 0 0D 0 1~l-1-1 0 10 0 0 0
(11.11)

Retrieval phase. During the retrieval phase, let us present an n-dimen-
sional unknown vector x, which frequently represents an incomplete or noisy
version of a stored vector in the net, to the Hopfield network. Information
retrieval the proceeds in accordance with a dynamic rule. The feedback inputs to
the jth neuron are equal to the weighted sum of neuron outputs y;, i = 1,2, ..., n.
With the notation wj; as the weights connecting the output of the ith neuron with
the input of the jth neuron, net, can be expressed as

n
netjzgwj,-y,+xj—9j Lji=1,2,....m j#Ii (11.12)
i#

where x, represents the external input to the jth neuron. x, will be removed right

after the iteration operation starts. In matrix form,

net = Wy +x — 0 (11.13)
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where
net, Xy N 0,
net = | net, X=X y=|y 6 =6 (11.14)
net,, X, Y 6,
and
0 wy Win
Woj 0 Wap
W= . (11.15)
Wa Wpo o 0

There is a sighum function (a hard limiter, abbreviated as “sgn”) at the output of
each neuron. This causes the following response of the jth neuron:

y; = —1 if net, <0

y;=+1  if net,>0 (11.16)

Once again, note that the updating procedure described here will be continued in
an asynchronous mode. For a given instant of time, only a single neuron is
allowed to update its output, and only one entry in vector y is allowed to change.
The next update in a series uses the already updated vector y. We can then
formulate the update rule as follows:

yik+ 1) =sgn[w/y(k)—6] j=12,...,m k=0,1,... (1117

where & represents the iteration step. Note that x; is removed right after the
iteration starts, and hence it no longer appears in the above expression. Note also
that it is required in this asynchronous update procedure that once an updated
entry of y(k+ 1) has been computed for a particular step, this update will
substitute the current value y(k) for the computation of its subsequent update.
The asynchronous (serial) updating procedure described here continues until
there are no further changes to report. That is, starting with the input vector x, the
network finally produces a time-invariant state vector y as shown below:

y;=sgn| Y wyy; — 6 Lj=1,2,....n j#1i (11.18)
1=l

1#1
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or in matrix form,

y = sgn(Wy — 0] (11.19)

Example. Present

X=fttr1t11 1 -1-1-1-11-1-1-F -1 1t -1 -1 -1 11111

to the net which has already had two patterns C and H stored in it. Test whether
the net can recognize this unknown pattern x. Use Wy as the weight matrix [see

expression (11.11)] for this problem, and ignore the constant of proportionality, %,
for simplicity.

T
X'Wey =11 1011 1 =1 <1 =1 1 1 =1 =1 =1 =1 1 =1 1 -1 -1 1111 W,
=12 7 7712 12 —12 <12 -2 -7 12 -7 -7 =7 -9 12 ~12 -12 12 -9 12 7 6 7 11]

After the signum function, we have

! T
y =sgn{x’ Wey}
=triIrIrt+1r 1 -1 -1 -1 -1 1-=1-1-1 =11t =11 =1 1111 1]

This 1s the code for character C. This signifies that the net can correctly identify
that input pattern. Let us input another unknown pattern:
X=t -1 -1 -111t-1-1-11 1t1rti1 1-1-1-111-1 -1 -11

to the network.
XTW(-HZ[I 1 =1 =11 1 =F =1 =11 11111 1 -1-1-111-1-] =1 1]Wg

=[12 =11 -11 11 12 12 ~12 —-12 —12 11 12 1t 1112 -2 -1 -12 11 12
-11 -8 -11 12].

After the signum function, we have

Y1 = Sgn{XTWCH}

=01 -1-1 -11 1 -1 -1-1%% 11111 1 -1-1-1 -1 1-1-1-11}

The net identifies the input pattern as the character H. It is correct.
Let us input to the net another pattern

X=p1r1r1t+1-1-11-11-11-1-11-11-1111111]

which is a noisy pattern. Proceeding, we have

XTWCH‘—‘[lllll 1 =1 =11 =1 1 =11 =1 1 1 L1 =11 1111 I[W
=8 7778 8 -8 8 10 -7 7 -7 -9 -7 -528 -8 -10-8 -9 87778

and

y] = sgn{xTW}
=pp1111 1 -1 -1 -1 -1 1-1-1-1-=11=-1-1-1-1 1111 1]
This noisy pattern is recognized as character C,
The Hopfield net works quite well. One of the other reasons Hopfield
model was so well received was that it could be implemented by integrated circuit
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hardware. However, it should be stressed that Hopfield model is a discrete time
dynamic system. The dynamic system approach to cognitive task is still in an
early development stage. The application of the dynamic models to real-time
associative problem will require a great deal of further scientific development.

So far several typical neural networks for pattern recognition have been
thoroughly discussed. It is our hope that readers have enough knowledge
provided to start on this challenging field. Those particular paradigms chosen
here were mainly because of their historical significance and their value in
illustrating some neural network concepts. Those who are interested in a more
comprehensive examination of some other models and the mathematics involved
can refer to literature and/or books dedicated in the discussion of the neural
networks.

PROBLEMS

11.1 (a) Write a program to implement a discrete Hopfield net to store
the numerals shown below:

Figure P11.1

(b) How many patterns from the above list can be stored and
recalled correctly?

(c) What is the ability of the net to respond correctly to noisy
input?
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12

Preprocessing in the Spatial Domain

Image enhancement is an important step in the processing of large data sets to
make the results more suitable for classification than were the original data. It
accentuates and sharpens the image features, such as edges, boundaries, and
contrast. The process does not increase the inherent information content in the
data, but it does increase the dynamic range of the features. Because of difficulties
experienced in quantifying the criteria for enhancement, and the fact that image
enhancement is so problem oriented, no general approaches are available that can
be used in every case, although many methods have been suggested.

The approaches suggested for enhancement can be grouped into two main
categories: spatial processing and transform processing. In transform processing,
the image function is first transformed to the transform domain and then
processed to meet the specific problem requirements. Inverse transform is
needed to yield the final spatial image results. On the other hand, with spatial
domain processing, the pixels in the image are manipulated directly.

121 DETERMINISTIC GRAY-LEVEL
TRANSFORMATION

Processing in the spatial domain is usually carried out pixel by pixel. Depending
on whether the processing is based only on the processed pixel or takes its
neighboring pixels into consideration, processing can be further divided into two

271
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subcategories: point processing and neighborhood processing. With this defini-
tion, the neighborhood used in point processing can be interpreted as being 1x 1.
In neighborhood processing, 3 x 3 or 5 x 5 windows are frequently used for the
processing of a single pixel, and it is quite obvious that the computational time
required will be greatly increased. Nevertheless, such an increase in computa-
tional time is sometimes needed to obtain local context information, which is
useful for decision making in specific pixel processing for certain purposes. For
example, to smooth an image, we need to use the similarity property for a smooth
region; to detect the boundary we need to detect the sharp gray-level change
between adjacent pixels.

By point processing we mean that the processing of a certain pixel in the
tmage depends on the information we have on that pixel itself, without
consideration of the status of its neighborhood. There are several ways to treat
this problem, one of which is deterministic gray-level transformation, and
another, histogram modification. Deterministic gray-level transformation is
quite straightforward. A conversion table or algebraic expression will be stored,
and the gray-level transformation for each pixel will be carried out either by table
lookup or by algebraic computation, as shown schematically in Figure 12.1, in
which g(x, y) is the image after gray-level transformation of the original image
f(x,y). For an image of 512 x 512 pixels, 262,144 operations will be required.
Figure 12.2 shows some of the deterministic gray-level transformations that could
be used to meet various requirements. With the gray-level transformation function
as shown in part (a), straight-line function | yields a brighter output than for the
original, whereas straight-line function 2 gives a lower gray-level output for each
pixel of the original image. Part (b) shows brightness stretching on the midregion
of the image gray levels, part (c) gives a more eccentric action on this
transformation which is useful in contrast stretching, and part (d) is the limiting
transformation function, which yields a binary image (i.e., only two gray levels
would exist in the image). Part (e) gives an effect opposite to that shown in part
(b). In part (f), function 1 shows a dark region stretching transformation (i.e., dark
becomes less dark, bright becomes less bright), and function 2 gives a bright
region stretching transformation (i.e., lower gray-level outputs for lower gray
levels of f(x, y), but higher gray-level outputs for higher gray levels of f(x, y).
The sawtooth contrast scaling gray-leve! transformation function shown in part
(g) can be used to produce a wide-dynamic-range image on a small-dynamic-
range display. This is achieved by removing the most significant bit of the pixel
value. Part (h) shows a reverse scaling, by means of which a negative of the
original image can be obtained. Part (i) shows a thresholding transformation,
where the height 4 can be changed to adjust the output dynamic range. Part (j)
shows a level slicing contrast enhancement, which permits isolation of a band of
input gray levels. Figures 12.3 to 12.13 shows some of the results obtained
in applying the typical contrast stretching transformations to enhance the images.
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FIGURE 12.1 Schematic diagram of deterministic gray-level transformation.
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FIGURE 12.2 Various gray-level transformation functions.
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(a)

(b)

FIGURE 12.3 Linear contrast stretching. (a) Original image; (b) processed image.

12.2 GRAY-LEVEL HISTOGRAM MODIFICATION
12.2.1 Gray-Level Histogram

Consider an image f(x,y) with discrete gray-level range (0,1,2,...,
2% — 1), where k is a positive integer. The gray-level histogram H(z) is the
discrete graph plotted with the number of pixels at gray level z versus z, or

H(z) = JJ[I{A‘.}-) = z] dx dy (12.1)
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(a)

(b)

FIGURE 12.4 Linecar contrast stretching. (a) Original image; (b) processed image.

It gives the distribution of the gray-level intensities over the image without
reference to their locations, only to their frequencies of occurrence. So a

histogram is a global representation of an image. For example, let f(x,y) be
the image

1 1 1 9 9 0 0 12
1 1 2.2 39 1 12

T ¢ 4 3. 0.5 1 3

i 2% 32 .10
feN=|4 o0 3 7 3 5§ 5 13
0 10 4 2 3 S 6 13

0 210 2 2 8 11 11

11 11 11 1112 M

Then f(x, y) has the histogram H(z) shown in Figure 12.14,
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(a)

(b)

FIGURE 12.5 Lincar contrast stretching. (a) Original image; (b) processed image.

Note that the H(z) is a unary operator. The input is an image, while the
output is an array:

[H(0) H(1) H(2) --- H(n)
where n =2 — 1 and kis a positive integer. From the histogram function H(z),

the area function A(z) can be computed. This is the area of the picture with gray
level above threshold .

0
A(z) = J H(z) d=z (12.2)
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{a)

(b)

FIGURE 12.6 Linear contrast stretching. (a) Original image; (b) processed image.

Differentiating Eq. (12.2) gives
H(z) = —— (12.3)

This can be interpreted using Figure 12.15, where A, is the area that contains all
the pixels with gray level greater than z,, or 4| = A(z;). A, is the area containing
all the pixels with gray level greater than z,, or A, = A(z;), and z, is greater than
z,, say, z; = z; + Az. We can then write

A(z) - Az+Az) d

i — = — A(Z) = H(z 2.

which is the mathematical definition of the histogram (Castleman, 1979).
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(a)

(b)

FIGURE 12.7 Linear contrast stretching. (a) Original image; (b) processed image.

12.2.2 Histogram Modification

As mentioned in Section 12.2.1, the histogram of an image represents the relative
frequency of occurrence of the various gray levels in the image, or the probability
density P,(r) versus r. Histogram modification techniques modify an image so
that its histogram has a desired shape. This technique can be used to improve the
image contrast, and is another effective method used in point processing.
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(b)

FIGURE 12.8 Lnear contrast stretching. (a) Original image; (b) processed image,

Figure 12.16a shows a histogram plot and Figure 12.16b shows the
cumulative density function versus r plot, With the histogram a distribution of
gray levels of pixels in an image can be described.

For an image of N x N pixels, the total number of pixels in the image is
Yo, m=N* wherer,,..., r, are the gray levels and n, is the number of pixels
at gray level r,. The histogram and the cumulative probability density function
(CPDF) will be of the form shown in Figure 12.17a and b, respectively.
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(b)

FIGURE 12,9 Reverse scaling. (a) Onginal image; (b) processed image.

It is obvious that """ (PDF) = 1, and CPDF is a single-valued monotonic
function. If the input image intensity vanable r = f(x,y),.r; <r < r;, for the
original image i1s mapped into the output image intensity s = g(x, y), 5o < 5 < 53,
for the processed image such that the output probability distnbution P,(s;)
follows some desired form for a given input probability distribution P,(r;), we can
relate them by Eqgs. (12.5) and (12.6):

s =T(r) re<r=<r (12.5)
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(a)

(b)
FIGURE 12.10 Reverse scaling. (a) Original image; (b) processed image.

or
r=T"(s) 5o S5 < 5g (12.6)

where T i1s a transformation operator. This transformation function can be
expressed in the form of a table, a functional curve or a mathematical expression.
This transformation function must satisfy the following two conditions:
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(b)

FIGURE 12.11 Binary image transformation. (a) Original image; (b) processed image.

I. It must be a single-value function and monotonically increasing to
avoid ambiguous situation in the interval 0 < r < 1, when normalized.
s, which is T(r), should also be within the range between 0 and 1 for
0<r<l.

.IJ

However, the number of gray levels used in s is not necessarily equal to that
used in r. This histogram modification problem can then be formulated as
follows:
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(a)

FIGURE 12.12 Binary image transformation. (a) Original image; (b) processed image.

I.  Find the transformation function 7'(r) to relate the PDF of the image on
the original gray-level scale and the desired probability density
distribution of the image on a new gray-level scale.

Or find the probability density function PDF of the image on a new
gray-level scale, when the PDF of the image on the original gray-level
scale and the transformation function are given.

ha
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(b)
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FIGURE 12.13 Level slicing contrast enhancement. (a) Original image; (b) processed
image with mapping function shown on (¢); (¢) mapping function.
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FIGURE 12.14 Histogram operation.
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FIGURE 12.15 Image regions with different gray levels.
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FIGURE 12.16 Probability density function and cumulative density function versus r

plot. (a) p,(r) versus r plot {histogram); (b) cumulative probability density function versus
¥ plot.
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FIGURE 12.17 Probability density function and cumulative probability density function
versus r plot. (a) Histogram; (b) cumulative probability density function versus # plot.

Note that this transformation is a gray-level transformation only. The
number of gray levels may be different before and after the transformation, but
there is no loss in pixel numbers. Hence

J
Zop,-(r,-) =1 (12.7)
j:
K
Eops(sk) =1 (12.8)

Equations (12.7) and (12.8) state that the input and output probability distribu-
tions must both sum to unity. Furthermore, the cumulative distributions for the
input and output must equate for any input index j, that is,

;ps(sk) =2 p(r) (12.9)
¢ 7]

Thus the probability that pixels in the input image have a pixel luminance value
<r, must be equal to the probability that pixels in the output image have a pixel
luminance value <s,, as long as the transformation rule s, = T'(r;) is followed.
The transformation in this case is monotonic. If for a given image the cumulative
probability distribution Z, pr,)) is replaced by the cumulative histogram
Z, H,(j), a solution for s, in terms of r; can be obtained by an inverted form
of Eq. (12.9), as shown in Figure 12.18.

Although it is not impossible, it is very difficult to solve this problem
analytically except for the very simple uniform output histogram case. Let us
replace the summation by integration; we then have

JS Ps(s) ds=Jr pr) dr (12.10)

Sll'llt\ rnlk!l
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H_(j) BEn

Js, gray level in
input image

Hs k)

k, gray level in
output image

FIGURE 12.18 Histogram modification.

where the definite integral of p,(r) over r on the right-hand side is the cumulative
distribution of the input image and equal, say, to P,.(r).
For a uniform histogram,
1

p(s) = const. = ———— for Spin <5 < Spax (12.11)
Smax "~ Smin

Substitution of Eq. (12.11) in (12.10) gives

-y l r
J ——ds = J pr) dr (12.12)
S Smax — Smm Youn
or
27w p o) (12.13)
Smax ~ Smin

from which we have

3= [Smax - Smln]Pr(r) + Stun (12.14)
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FIGURE 12.19 Transfer function derived for histogram equalization.

which is the histogram equalization transfer function and is shown in Figure
12.19. P,(r), the cumulative probability distribution of the input image, can be
approximated by its cumulative histogram or P,(r) ~ Z, H.,(j). For an exponen-
tial output histogram,

p(s) = ce™ 5 Sml S > S0 (12.15)
By substituting Eq. (12.15) in Eq. (12.10), we obtain

J ae—-l[S—Smm] dS — J pr(r) dr (12.16)

3 r

min nmn

or
1 —_ e—a{s—sm,,,] = Pr(r) (12‘17)

The transfer function will then be
1
5 = Smun —&ln[l — P.(r)] (12.18)

The procedure for conducting the histogram equalization can be summar-
ized as consisting of the following steps:

1. Compute the average number of pixels per gray level.

2. Starting from the lowest gray-level band, accumulate the number of
pixels until the sum is closest to the average. All of these pixels are
then rescaled to the new reconstruction levels.

3. Ifan old gray-level band is to be divided into several new bands, either
do it randomly or adopt a rational strategy--one being to distribute
them by region. An example of a 16-gray-level 128 x 128 pixel image
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TABLE 12.1 Example Image Showing Histogram Equalization Mapping

k Fi n; pr(rk) = nk/an CPDF= ZP,.(’”A.)
0 0 300 0.0183 0.0183
1 115 1500 0.0916 0.1099
2 2/15 3500 0.2136 0.3235
3 3/15 3000 0.1831 0.5066
4 4/15 2125 0.1297 0.6363
5 5/15 1625 0.0992 0.7355
6 6/15 1250 0.0763 0.8118
7 7/15 900 0.0549 0.8667
8 8/15 650 0.0397 0.9064
9 9/15 550 0.0336 0.9400

10 10/15 325 0.0198 0.9598

11 11/15 200 0.0122 0.9720

12 12/15 150 0.0092 09812

13 13/15 140 0.0085 0.9897

14 14/15 97 0.0059 0.9956

15 1 72 0.0044 1.0000

Y n, =16,384 1.0000
3500
3000
2500
"k
2000
1500
1000]
50
0 r
T 4 6 8 1 1z L
15 15 15 15 15 1 15

FIGURE 12.20 Original histogram of the example image.
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Summation of

0 VIS 215 3/15 415 5/15 6/15 715 815 915 10/15 11/15 1215 13/15 14/15 15/15 pixels

0 300 300
1/15 724 776 1500
2/15 248 1024 1024 1024 180 3500
315 844 1024 1024 108 3000
4/15 916 1024 185 2125
5/15 839 786 1625
6/15 238 1012 - 1250
7115 12 888 900
8/15 136 514 650
9/15 510 40 550
10715 325 325
11/15 200 200
12/15 150 150
13/15 140 140
14/15 97 97
I 72 72
1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 16384

FIGURE 12.21 Gray-level transformation matrix for the example image of Figure 12.20.
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is shown in Table 12.1. Sixteen equally spaced gray levels are assumed
in this example. The average number of pixels per gray level is
16,384/16 = 1024. The histogram of this image is shown in Figure
12.20, and the gray-level transformation matrix can be formulated as
shown in Fig. 12.21.

Figures 12.22a, 12.23a, and 12.24a show pictures that are barely visible due
to the narrow range of values occupied by the pixels of this image, as shown by
the histograms in Figures 12.22b, 12.23b, and 12.24b. After histogram equaliza-
tion, considerable improvements were achieved. See Figures 12.22c and d, 12.23¢
and d, and 12.24¢ and d for the enhanced images and their equalized histograms.

Although histogram equalization is a very useful tool, especially for the
enhancement of a low-contrast image, this approach is limited to the generation of
only one result (i.e., an approximation of a uniform histogram). In many cases it
is desired to have a transformation such that probability density function of the
output image matches that of a prespecified probability density function. An
examplary application is to specify interactively particular histograms capable of
highlighting certain gray-level ranges in an image. See Gonzalez and Wintz
(1987, p. 157) for a set of images that shows an original semidark room viewed
from a doorway, the image after the histogram equalization process, and the
image after interactive histogram specification. The result obtained using histo-
gram specification has the much more balanced appearance that we seek. In the
image processed by histogram equalization, the contrast was somewhat high.

1t is therefore our desire to develop a gray-level transformation such that the
histogram of the output image matches the one specified. In other words, given
two histograms, how can we find a gray-level transformation 7T so that one
histogram can be converted into another? The procedure to achieve this is a
modified version of that used for histogram equalization:

1. Find a transformation 7, that will transform 4, into a uniform
histogram. This can be done by performing histogram equalization
on the input image.

2. Find a transformation 7, that will transform the output image with
prespecified histogram A, to yield a uniform histogram. This yields a
second transformation s = T,(r).

3. Obtain the inverse transformation described in step 2.

4. Combine the transformation 7, and the inverse transformation 75! to
give the composite transform, which is

s =Ty (Ty(r) (12.19)

Figure 12.25 shows the composite process for the histogram specification.
Another application of histogram specification worthy of mention is for compar-
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FIGURE 12.22 Considerable improvement in the image achieved through histogram equalization. (a) Original image; (b) original
histogram; (c) processed image; (d) histogram afier equalization,
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FIGURE 12.23 Considerable improvement in the image achieved through histogram equalization. (a) Original image; (b) original 8
histogram; (c) processed image; (d) histogram after equalization. w
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(a) (b)

(c) (d)

FIGURE 12.24 Considerable improvement in the image achieved through histogram
equalization. (a) Onginal image; (b) original histogram; (c) processed image; (d) histogram
after equalization.
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—| T ) |—— histogram

Output image «———| 77'( )
with specified
(d histogram

FIGURE 12.25 Composite process for histogram specification. (a) Histogram of the
input image; (b) uniform histogram after transformation 75; (c) desired histogram of the
output image; (d) composite process for the histogram specification.

ison of the two images of a scene acquired under different illumination condi-
tions.

12.2.3 HistogramThinning

So far we have discussed the use of histogram modification to enhance an tmage.
Histogram modification can also be used to help segment objects for detection
and/or identification. This is known as histogram thinning. Whereas in histogram
equalization the histogram is flattened to achieve full dynamic range of the gray
levels to get more details of the image, the goal of histogram thinning is to obtain
the opposite effect on the image. The approach is to transform the input image
into one with fewer number of gray levels without loss of detail.

The idea we use in this process is to thin each peak on the original
histogram into a spike so that the gray levels belonging to each peak are now
represented by a single gray level. The image is thus segmented into regions that
correspond to the gray-level ranges of the original peaks. This histogram thinning
process helps segment the image into isolated objects, and is useful in the image
understanding process to differentiate and/or identify various objects (e.g., pond,
grass, forest, highway) in remote sensing satellite and aerial images.

Figure 12.26 shows a histogram with two humps, each of which represents
an object. In the histogram thinning process, it is desired to thin the original
histogram (a) into a new histogram (b), so that these two objects can be separated
more easily. The algorithm suggested is:
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FIGURE 12.26 Histogram thinning. (a) Original histogram; (b) thinned histogram.

1. Calculate the initial histogram.
Starting from the lowest value of the histogram, search for the local
peaks.

3. When a local peak is located, move a certain fraction of pixels toward
the peak to “thin” the peak.

4. After the peak has been thinned, find the second peak and do the same,
until no more local peaks exist.

The entire process is summarized in the flow diagram shown in Figure 12.27. A
local peak of the histogram is said to appear at gray level 7, if the number of pixels
at i (say B,) is greater than the average of the numbers of pixels at gray levels
i+r,r=1,2,....r (say A"), and also greater than the average of the numbers
of pixels at gray levels i —r,# =1,2,...,r (say A7). That is, the local peak
appears at the gray level / when B; is greater than both AT and 4™, where

I r
A+7::;:§%l%+n
n=

and

1 .-
A— = Z B,‘_n
¥ p=1
Otherwise, move forward to look for a prospective local peak. When a local peak
is found, a certain fraction of pixels is to be moved toward the local peak step by
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Calculate
the initial histogram
of the image

¥

} 7

Examine bins i + j, j=1,2,..., 7 {on each side of i)

1 r
Calculate A+ = T Z B,‘+n

_ 1r
Calculate A™ =— ¥ B;_,
-

r=i+1

f

Fraction of the pixels
whose gray levels will
be shifted toward {

1
Calculate X = E— (B;-4)

i

Execute these changes:
B, X pixels changes from g.1. (i+) 10 (i+r-1)

B,4,.1X pixels changes from g.1. (i+r-1) to (1+4r-2)
B4 1 X pixels changes from i+1 toi

STOP

FiGURE 12.27 TFlow diagram of the histogram thinning process. B, = number of pixels
in the ith histogram; A* =average number of pixels at high end of the histogram;

A~ = average number of pixels at low end of the histogram.
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step to perform the histogram thinning process. This fraction (say X'} is computed
according to

B, —4
¥ =2i_“
B,

where 4 = 1(4+ + 47).

123 SMOOTHING AND NOISE ELIMINATION

Neighborhood processing differs from point processing in that the local context
information will be used for specific pixel processing. Pixels close to each other
are supposed to have approximately the same gray levels except for those at the
boundary. Noise can come from various sources. It can be introduced during
transmission through the channel. This type of noise has no relation to the image
signal. Its value is generally independent of the strength of the image signal. It is
additive in nature and can be put in the following form:

[, y) =f'(x,y) + n(x, ) (12.20)

where f'(x,y) simply denotes the hypothetically noise-free image, n the noise,
and f(x, y) the noisy image. This kind of noise can be estimated by a statistical
analysis of a region known to contain a constant gray level, and can be minimized
by classical statistical filtering or by spatial ad hoc processing technique.

Another source of noise is the equipment or the recording medium. This
kind of noise is multiplicative in nature, and its level depends on the level of the
image signal. An example of this is noise from the digitizer, such as the flying
spot scanner, TV raster lines, and photographic grain noise.

In practice, there frequently is a difference between an image and its
quantized image. This difference can be classified as quantization noise and can
be estimated.

In the smoothing of an image, we have to determine the nature of the noise
points first. If they belong to fine noise, they are usually isolated points. This
means that each noise point has nonnoise neighbors. These noise points, known
as “salt-and-pepper noise,” usually occur on raster lines.

After determining the nature of the noise, we can set up an approximate
approach to eliminate the noise. Detection of the noise point can be done by
comparing its gray level with those of its neighbors. If its gray level is
substantially larger than or smaller than those of all or nearly all of its neighbors,
the point can be classified as a noise point, and the gray level of this noise point
can be replaced by the weighted average of the gray levels of its neighbors.

Coarse noise (e.g., a 2 x 2 pixel core) is rather difficult to deal with. The
difficulty will be in detection. We treat such noise by various appropriate
methods, and sometimes we need some a priori information.
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Various sizes of neighborhood can be used for noise detection and for the
smoothing process. A 3 x 3 pixel window is satisfactory in most cases, although a
large neighborhood is sometimes used for statistical smoothing. For the border
points (i.e., for the points on four sides of an image), some amendment should be
added either by ignoring or by duplicating the side rows and columns.

Multiples of the estimated standard deviation of the noise can be chosen for
the threshold by which the noisy point must differ from its neighborhood. The
estimation of the standard deviation of the noise can be obtained by measuring
the standard deviation of gray levels over a region that is constant in the nonnoisy
image. It is assumed here that the noise has zero mean. Some other method, such
as a majority count of the neighbors that have larger or smaller gray levels than
the given point, is also adopted.

Based on the arguments we have presented so far, a decision rule can be set
for the determination of the gray level of each point. Generally speaking, if a
point is a noise point, its gray level can be replaced by the weighted average of its
neighbors. If a point is not a noise point, its original gray level is still used.

There are some other possible ways of deciding whether the given point is a
noise point:

1. Compare the gray level of the point with those of its neighbors. If the
comparison shows that |/ — f;| > 7, it will be considered a noise point,
where f is the gray level of the point; f,i=0,...,8, if a 3x3
neighborhood is used, are the gray levels of its neighboring points;
and t is the threshold chosen.

2. Compare the gray level of the point with the average gray level of its
neighbors. If |/ — f,.,| > 0, the point is a noise point. The advantage
of this algorithm is simplicity of computation; its shortcoming is that
some difficulties will be experienced 1n distinguishing isolating points
from points on edges or on boundary lines.

3. A third way of determining whether the point is a noise point is called
“fuzzy decision.” Let p be the probability of the point being a noise
point; then (1 — p) will be the probability of the point not being a noise
point. Then a linear combination of f, the gray level of that point, and
Savg» the average gray level of its neighbors (f,,, = >_ f;/k) will give
the gray level of the point under consideration, such as

2
g=(l —p)f—+—pT (1221)

A straightforward neighborhood averaging algorithm is discussed here for
the smoothing processing. Let f(x, ¥} be the noisy image. The smoothed image
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g(x, y) after averaging processing can be obtained from the following relation:

1

g(x,y):NZEW,,‘mf(n,m) forx,y=0,1,...,N—1 (12.22)
n.mef)

where  is the rectangular » x m neighborhood defined, ¥, ,, the n x m weight

array, and N the total number of pixels defined by Q. A criterion can be
formulated such that if

|l fx.y)—gx. ) =1 (12.23)

where 1 denotes the threshold chosen, then f(x,y) is replaced by g(x,y).
Otherwise, no change in the gray level will be made.

If, for example, the weight array W, , and f(x, y) are, respectively,

1 11
1 1
~r I/Vn,m ==/1 11
N 911 11
and
100 120 100
fx, ) =1120 90
100 90 100
and the threshold value chosen for the example is 40, then
100 120 100
gry)={120 A1D 90
100 90 100

where the circled pixel “200” is replaced by the average gray level “113™ of the
nine pixels. Note that the multiplication 3~ >~ W, , f(n, m) in Eq. (12.22) is not a
matrix multiplication, but is

3
805.3) = 3 5 5 Wi ()

n.m=|

W f(L 1) W, f(1,2) W, f(1,3)
= 9 Wnf2, 1) Wnf2.2) Wy/f23) (12.24)
Wy £(3,1) Wy f(3,2) Wi f(3.3)

where
Wl 1 WlZ Wl 3
H/n,m = WZl W22 W23
W3| W32 W33
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and

AN f.2) f(1.3)
flnomy=1f2.1) f(2,2) [(2.3)
f3, D f3.2) f3.3)

Let us take another example for illustration. Let

100 120 100
Flr.y) =120 90
100 90 100

where the gray level of the pixel to be processed is 140, while those of its
neighbors are the same as in the preceding example. Since the absolute value of
the difference between 140 and the average of the nine pixels (107) is less than
the threshold, no change in gray-level value is made on the circled pixel. Move
the mask over every pixel in the image, and a smoothed image can be obtained.
The reason for using the threshold in the process is to reduce the blurring effect
produced by the neighborhood averaging.

Some other masks that were suggested are shown in Figure 12.28. Note that
in parts (a) and (b), different weights are given to the centering pixel and its
neighbors. In parts (c) and (d), the averaging process is operated only on the
neighboring pixels and different neighbors are taken into consideration. This
smoothing process can be generalized as

1
5 L X Wy (1.m)

n.med
X, y) = . 1
g i 17(5.3) = 35 2 3 W fl0 )] >
nmeQ)
f(x,») otherwise
(12.25)
1 1 1 1 1 21
- . 1
=011 21 w=—|2 42
1 1 1 1 2 1
(a) (b)
i 01 0 1 1 1 1
%% =Z 1 0 1 w =§ 1 ¢ 1
01 0 1 1 1
(c) (d)

FIGURE 12.28 Various masks frequently used in image smoothing.
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Smoothing by neighborhood averaging is effective in removing the noise from an
image. On the other hand, it introduces an adverse effect by losing part of the
edge information, and blurring results. It is, of course, our desire to have the noise
smoothed out but to retain the high-frequency contents of the image. From
psychological studies we know that human eyes can tolerate more noise in areas
of high signal strength (call them areas of high activity) than in areas of low
signal strength (areas of low activity). By “low signal strength” we refer to the
image region, with very little energy in the higher frequencies. It seems to be a
good idea to process the image in such a way that in areas of high activity the
image be left untouched, with only areas of low activity in the noisy image
smoothed, that is, removing the random noises from an image selectively while
retaining visual resolution. Statistical means can be applied to our case to
determine whether a given area has high or low signal activity. Assume that
the noise image contains gaussian noise with zero mean and standard deviation,
and use the following notation for analysis:

[ = noisy image
B = blurred image
D =TI — B = difference image

A blurred image resulting from neighborhood averaging may be regarded as a
low-order fit to the original image. If the low-order fit to the data is perfect, the
blurred image equals the original nonnoisy image. It follows that ¢ will be equal
to o2, where ¢% is the variance in the difference image, and o7 is that in the

n

original image. From this, 2 conclusion can be drawn: If 63 < o2, the blurred

image is an adequate representation of the original image. This implies that the
original signal has low signal activity. But if 62, > o2, the image cannot be well

[/

represented by the low-order function. Hence o2 can be used as a logical

threshold to test 6% to see in which category of the signal activity the image
region really belongs.

Based on the foregoing analysis, an algorithm can be designed to our
satisfaction for generation of a new image N. Partition the image into 2 number of
areas. In areas of low activity we pass their smoothed images, while in the area of
high activity with very small values of 62 /0% (i.e., < 1), we just leave this image
section /; intact (i.e., as it is). For some arcas with moderate values of the ratio
o2 /a%, we compute a weighted average of B, and /, for them:

N; = (wg;)B; + (wp)l, (12.26)

where [, is the ith image section of the original image, B; is the blurred image of
the ith image section, and N, is the new image generated for the ith image section.

wy,; and wy; are, respectively, their weights which will be shown, respectively, as 6,
and (1 — 0,).
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The algorithm can then be summarized as follows:

1. Obtain B by blurring the noisy 1mage /.

2. Compute the difference image D, where D ={ — B. From this differ-

ence, we can compute g;, the variance of the noise.

Partition the image into p x ¢ sections denoted as /;.

4. For each section /, smooth it to obtain B; and compute the difference
image D; and its variance o},

5. For each section, define 0, as

[F8]

2
0, = min[l.O, f,i] (12.27)
Thi
where @2 is the variance of the original noisy image as a whole, which
has been computed in step 2. a3, is the variance of this ith difference
image section.
6. Compute a new image for the ith section with

N, = 0B, + (1 - 0)I, (12.28)

7. Repeat this process for all these sections to obtain a new image.

124 EDGE SHARPENING

As just discussed, the smoothing of an image by neighborhood averaging is
analogous to an integration process, In the integration process, part of the edge
information is lost and blurnng results. Differentiation 1s the reverse of integra-
tion, and therefore by using differentiation, a sharpening effect can be expected
on the edge.

If we are given a two-dimensional image function f(x, ). a vector gradient
G| f(x, y}] can be formed as

Cl

Gl f(x, )] = d; (12.29)

ay

The direction of this vector is toward the maximum rate of increase of the image
function f(x. y), while its magnitude is represented by

2 1172
I VCANTLAY
G= [(m) +(8y) } (12.30)
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of
3y
k R
(j,k) o o (3+1,k)
o f
oy
(o]
(j,k+1)

FIGURE 12.29 Digital implementation of a gradient operator,

For discrete 1mages, the coordinate system is chosen as shown in Figure 12.29,
with df /dx pointing in the vertical downward direction and df /dy in the hori-
zontal nghtward direction. Equation (12.30) can then be implemented digitally by

G=[fUK)—fG+ LR +(f k) —f( k+ 1)) (12.31)

which is commonly called a three-point gradient. This implementation is more
accurate, but is computationally expensive. If the absolute values of the terms
inside the brackets under the square root are taken for the value of |G|,

Gl = f(. ) —fG+ LRI+ SR =fk+ 1) (12.32)

computational advantages can be achieved.

Another digital implementation for the gradient is called Roberts' cross
operator. This is shown in Figure 12.30, where cross differences are used for the
implementation as follows:

Gl = /R —fU+ L+ DI+ A+ D)=+ 1.0 (12.33)

This is commonly called a four-point gradient.

It can easily be seen from Eqgs. (12.31) to (12.33) that the magnitude of the
gradient is large for prominent edges. small for a rather smooth area, and zero for
a constant-gray-level area.

Gy k) (y+1, K)

(j,k+1) (j+1, k+1)

FIGURE 12.30 Robert’s cross-gradient operator.
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Several algorithms are available for performing edge sharpening:

Algorithm 1. Edge Sharpening by Selectively Replacing a Pixel Point by
its Gradient. The algorithm can be put in the form shown in Figure 12.31. The
computation of |G[ f( . k)]| can be done using the three-point gradient or the
four-point gradient expression. When the value of |G[ f(/, k)]| is greater than or
equal to a threshold, replace the pixel by its gradient value, or by gray level 255.
Otherwise, keep it in the original level or a zero (or low) gray level. The process
will run point by point through the 262,144 points from top to bottom and from
left to right on the image.

Different gradient images can be generated from this algorithm depending
on the values chosen for the g( /. k),j.k=1.2,...,N — 1, when its gradient
G[f(J. k)] > T and the values chosen for g(/, k) when G[ f(J. k)] < T. A binary
gradient image will be obtained when the edges and background are displayed in
255 and 0. An edge-emphasized image without destroying the characteristics of
smooth background can be obtained by

NG G Y GG RN =T
gl k)= [, k) otherwise

Algorithm 2. Edge Sharpening by Statistical Differencing. The algorithm
can be stated as follows:

(a) Specify a window (typically 7 x 7 pixels) with the pixel (/. k) as the
center.

(b) Compute the standard deviation ¢ or variance o? over the elements
inside the window.

1 VNWN - ,
= Y Y U=k (12.34)

2/,
o’ (j, k)=
N_],kewmdow

Calculate |Glfey. k)|

lGlre. 51|
2threshold

No

¢, K.or
g0y, k) =

0 (or low gray level)

|Gl.or

i, k)= 255

FIGURE 12.31 Algorithm for edge sharpening by selectively replacing pixel points by
their gradients.



306 Chapter 12

where N is the number of pixels in the window and f( /. k) is the mean
value of the original image in the window.

(c) Replace each pixel by a value g(/, k) which is the quotient of its
original value divided by o(J, k) to generate the new image, such as

_IU.K)
o, k)

It can be noted that the enhanced image g(j, k) will be increased in amplitude

with respect to the original image f(/. k) at the edge point and decreased
elsewhere.

g(J. k)

Algorithm 3. Edge Sharpening by Spatial Convolution with a High-Pass
Mask H. For example,

(i kY=Y f(n,m)H{n,m,j k) (12.35)

nom

Examples of high-pass masks for edge sharpening are

0 -1 0 -1 -1 -1 1 -2 1

H=|-1 5 -1 H=|-1 9 —-1| H=|=-2 5 =2

0 -t 0 -1 -1 -1 1 =2 1
(12.36)

The summation of the elements in each mask equals 1. The algorithm will be:

1. Examine all the pixels and compute g( j, k) by convolving f(j, k) with
H.

2. Either use this computed value of g( /. k) as the new gray level of the
pixel concerned or use the original value of f(j. k), depending on
whether the difference between the computed g( j, k) and the original
f(J, k) is greater than or less than the threshold chosen.

Other edge enhancement masks and operators have been suggested by
various authors. These masks can be used to combine with the original image
array to yield a two-dimensional discrete differentiation.

Compass gradient masks. These are so named because they indicate the
slope directions of maximum responses, as shown by the dashed angle in Figure
12.32.

Algorithm 4. Edge Sharpening with a Laplacian Operator. Assume that
the blurring process of an image may be modeled by the diffusion equation

¥
_a_t_,kvf (12.37)
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1 1 1 -1 -1 -1, 1 1 1 11-1 -1
N 7 I
~ AN // IR |
1 42\ 1 1 <271 -1 =241 112
e \ ] (S
A1 -1 -1 1 1 1 -1 -1, 1 1 1 1
North South Northeast Southwest
\ 7 1
~1N 1 1 1 1.4 -1 -1 1 1 1 1
N , . .
~
-1 -2%1 1 &2 -1 -1 -2V 1 11-2 -1
s < R ',
1,71 1 1 1n-1 101 1 10-1 -1
s NS
East West Southeast Northwest

FIGURE 12.32 Compass gradient masks.

where / = f(x. y, 1) and Vf = &/ /a2 + 3 /. Let
g=/f(x.y.0) att =0

be the unblurred image, and
f=f(xv.1) where T > 0

be the blurred image. Then by Taylor’s expansion, we have

A (v v a2 a2 s
fx.y.0) = f(x. v, r)+(0—r)d‘/("‘-“r)+(0 T) df(x.J.r)Jr_”

ot 2! -
(12.38)
Truncation at the second term gives
. af (x.y. t
S 3. 0) 2= f(x.y.7) — T—f_(’a})—) (12.39)
Substituting (12.37) into (12.39) yields
g f—ktVf (12.40)
where k7 is a constant. Equation (12.40) can be interpreted as
Unblurred image = blurred image — positive constant
x laplacian of the blurred image (12.41)

In other words, we can simply use a subtractive linear combination of the blurred
image and its laplacian to restore the unblurred image.
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Figure 12.33 gives some processing results obtained with this method. The
original image shown in Figure 12.33a was very bad, and the details of the face
can hardly be identified. This image is improved, although still not very good, is
shown in Figure 12.33b. This method is useful for those images taken in very bad
environments and need a very fast process to improve it. It is possible to improve
the image a little bit more if careful selection of the constant is made. Figure
12.34a and b shows the original image and the processed one by this algorithm.

Reference to Figure 12.35 gives -

af f;'+1 Sx+ly  Jxy fr '4
ax Ax
af fr‘ fr—-l Iy Jx=ly
o Av
and
af fr v+1 f\ fxa+l — Jxy
&y Ay
8_f f; fxy  Jxay—-t f;\ i
dy Ay

The laplacian of the image function f(x, y) will then be

Vif(x.y) = % + g;—{ (12.44)
or
+1y 1 ’) — \Uxy T .;— ,v)
Vif(x.y) = Urrry = )(Ax)(zf' feot,
(f;'.y+l _f.;'.v) - (frv _.f.;"y-—l)
+ - - (12.45)
Ay

If both Ax and Ay are chosen to be unity, which is the usual practice in digital
image processing, we have

V2 (x.9) = Y fag —fo) (12.46)

where

f;avg = Zl;(fx»’rl.y +f;—1.,\) +J€r,y+l +fx,y—l) (12.47)
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(a)

\d b

(b)

FIGURE 12.33 Processed results obtained with the method of edge sharpening with a
laplacian operator. (a) Onginal image; (b) processed image.
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(b)

FIGURE 12.34 Processed results obtained with the method of edge sharpening with a
laplacian operator. (b) Original image; (b) processed image.

I y
X e f(x—1,y)

dfiax

afidy afiay
i,
. X,y *flx, y+1)
J(x, y=1) ’ a

dffax

“fx+1y)

FIGURE 12.35 Digital implementation of laplacian operator.
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0 -1 0 —1 -1 -1 1 -2 1
-1 4 -1 -1 8 -1 -2 4 -2

0 -1 0 -1 -1 -1 1 -2 1
(@) (b) (©

FIGURE 12.36 Laplacian masks.

is the average of the four neighbors of the image point under consideration.
Equations (12.46) and (12.47) can further be put in a form as the convolution of a
mask (called a laplacian mask) with the image function window

0 1 0 0 .ﬁr—l._r 0
Vi, =1 —4 L|*fior S o (12.48)
0O 1 0|| 0 fip, O

The laplacian mask can be used to detect lines, line ends, and points over edges.
By convolution of an image with a Laplacian mask, we can obtain edge
sharpening without regard to edge direction. The mask shown in part (b) of
Figure 12.36 is obtained by adding the mask shown in part (a) to the result
obtained when part (a) is rotated by 45°. The mask shown in part (c) is obtained
by subtracting the mask in part (a) after it has been rotated by 45°, from twice the
mask shown in part (a). The laplacian of pixels at the edge is high, but it is not as
high as that at the noise point. This is because the edge is directional, whereas for
the noise point, both V_‘z‘. f and Vﬁ f are high. With this property in mind, the noise
points can be distinguished from the edge pixels. Some other measures will be
provided for the detection of edges only.

Algorithm 5. Nonlinear Edge Operators. Among the nonlinear edge
operators are the Sobel operator, Kirsch operator, and Wallis operator.

Sobel operator. This operator is a 3 x 3 window centered at (/. k), as

shown in Figure 12.37. The intensity gradient at the point (j, k) is defined as
either

s= (st 452 (12.49)
or

s = |sel + s, (12.50)
where s, and s, are, respectively, computed from its neighbors according to

sy = (g + 245 + Ay) — (Ay + 24, + 4;) (12.51)
5, = (A, + 245 + A,) — (Ag + 24, + 4g) (12.52)



312 Chapter 12

Ay A A
A fUK) As
A6 AS A4

FIGURE 12.37 A 3 x 3 window for edge detection.

X

computation of the horizontal and vertical compenents of the gradient vector
in the x and y directions at the center point of the 3 x 3 window shown in Figure
12.37.

or the Sobel high-pass weighting masks are, respectively, W, and W, for

1 -2 -1
W.={ 0 0 0 (12.53)
1 2 1
and
1 0 1
w,=|-2 0 2 (12.54)
—1 0 1

Convolving these masks with an image f(x, y) over all the points on the image
gives the gradient image. Figures 12.38 to 12.41 show the original images, the
images comprising all the horizontal edge elements, those comprising all the
vertical edge elements, as well as the complete images which combine all the
edge elements responding to various directional masks.

Kirsh edge operator. Another 3 x 3 nonlinear edge enhancement algo-
rithm was suggested by Kirsch (see Figure 12.37). The subscripts of its neighbors
are made such that they are labeled in ascending order. Modulo 8 arithmetic is
used in this computation. Then the enhancement value of the pixel is given as

G(j. k) = max(l, m7aox (158, — 31111) (12.55)
1=

where S; and 7, are computed, respectively, from
Si=A,+4 1+ 4, (12.56)
and

=4, +A 4+ A5+ A6+ 49 (12.57)
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(b)

FIGURE 12.38 Gradient image obtained by applying Sobel edge operator. (a) Original
image: (b) response of all horizontal edges; (c) response of all vertical edge elements;
(d) response of all 45° edge elements; (&) response of all 135° edge elements; (f) response
of all (s, + 5,) edge elements; (g) response of (545 + 5,15) edge elements; (h) complete

gradient image.
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(€)

(d)

FIGURE 12.38 Continued
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FIGURE 12.38 Conrinued
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Comgaste L nerd image "

(h)

FIGURE 12.38 Continued



(b} )

FIGURE 12.39 Gradient image obtained by applying Sobel edge operator. (a) Original image; (b) responsc
of all horizontal edges; (c) response of all vertical edge elements; (d) response of all 45° edge elements; (¢)
response of all 135° edge elements; (f) response of all (s, + s,) edge clements; (g) response of (55 + 5y35)
edge clements; (h) complete gradient image.
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FIGURE 12.39 Continued
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FIGURE 1240 Gradient image obtained by applying Sobel edge operator. (a) Original image; (b) response
of all horizontal edges; (c) response of all vertical edge elements; (d) response of all 45° edge elements; (¢)
response of all 135° edge elements; (f) response of all (s, +5,) edge elements; (g) response of (345 + 5,35)
edge clements; (h) complete gradient image.
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FIGURE 1240 Continued
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(b)

FIGURE 1241 Gradient image obtained by applying Sobel edge operator. (a) Original
image; (b) response of all honzontal edges; (c) response of all vertical edge elements;
(d) response of all 45° edge elements; (e) response of all 135” edge elements: (f) response
of all (s, +5,) edge elements; (g) response of (s + 5,15) edge elements; (h) complete
gradient image.
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FIGURE 12.41
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(e)

(f)
FiGURE 12.41 Continued
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(h)
FiGURE 1241 Continued
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FIGURE 12.42 Tllustrative window.

Take, for example, an illustrative window as shown in Figure 12.42. When / = 2,
S, =A, +A;+4,=3
Ty=As+Ag+ A7+ Ay + 4, =17

and
|58, —37,| = 36

Similarly, we can get eight values for |55, —3T,|.i=10..... 7, as follows:

i S T, 5537
0 7 13 4
1 3 17 36
2 3 17 36
3 K] 17 36
4 7 13 4
5 11 9 28
6 15 5 60
7 i1 9 28

Substitution of these values into Eq. (12.55) gives the gradient at the point
G(J. k) = 60. It is not difficult to see from Eq. (12.55) that when the window is
passed into a smoothed region (i.e., with the same gray level in the neighbors as
the center pixel), {55, — 37, =0.i=0,..., 7. Then the gradient G(J, k) at this
center pixel will assume a value of 1. Basically, the Kirsch operator provides the
maximal compass gradient magnitude about an image point [ignoring the pixel
value of f( j, k)]

Wallis edge operator. This is a logarithmic laplacian edge detector. The
principle of this detector is based on the homomorphic image processing. The
assumption that Wallis made is that if the difference between the absolute value of
the logarithm of the pixel luminance and the absolute value of the average of the
logarithms of its four nearest neighbors is greater than a threshold value, an edge
1s assumed to exist.



326 Chapter 12

Using the same window as that used by Kirsch (Figure 12.37), an
expression for G(j, k) can be put in the following form:

G(J. k) = log[ f(x. y)] — §log[4,43454;] (12.58)
or
1 e
G(j. k)= 4logA—-——————IABASA7 (12.59)

It can be seen that the logarithm does not have to be computed when compared
with the threshold. The computation will be simplified. In addition, this technique
is insensitive to multiplicative change in the luminance level, since f(x.y)
changes with 4,, 4;, 45, and 4, by the same ratio.

Algorithm 6. Least-Square-Fit Operator. Before the image is pro-
cessed, it is smoothed. Referring to Figure 12.43, let f(x,y) be the image
model in the xy plane, and z = ax + by + ¢ be a plane that fits the four points
shown. The error that resulted when z = ax + by + ¢ is taken as the image plane
will be the square root of Error?, shown by the following equation:

Error? = {ai + bj + ¢ — DY

+lali+ D) +bj+c—fl+ 1))
lai+b(j+ D+ e—flj+ 1D
+la+ D)+ b+ D+c—fli+1j+ D (12.60)

To optimize the solution, take &(Error*)/da, a(Error?)/db, and 3(Error*)/dc and
set these partial derivatives to zero. a, b and ¢ can then be found:

U sr) +HGE+1+ ) fGH+/ET+ )

(12.61)
> 2
y _fUj+ D+ J;'(zvr Lj+1) f.)) +J;(i + 1)) (12.62)

Yy

l fa. N .+

X

fG+1,) fa+ Lj+ 1)

FIGURE 12.43 Window used for lcast-square-fit edge detection operator.
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and

e =BG H+f+ 1) +fGj+ D —fli+ 1+ 1) —ia —ib]
(12.63)

It can easily be seen that Eq. (12.61) gives the difference of the averages of pixels
in two consecutive columns. Similarly, Eq. (12.62) gives the difference of the
averages of pixels in two consecutive rows. The value of ¢ given by Eq. (12.63) is
more complicated, but this value is not needed in the edge detection. The gradient
of the plane can then be found as

N
=(Z) {5 12.64
o= [(ax) +(8.V) } (1269

or

G =(a*+b)"* (12.65)
which can further be approximated as

G = |a| + |5 (12.66)
or

G = max[|al, |5]] (12.67)

This gradient is usually called a digital gradient. Computation of the digital
gradient is more complicated than that of the Roberts gradient. But it is less
sensitive to noise, because in this process, averaging is done prior to differencing.

Algorithm 7. Edge Detection via Zero Crossing. Edges in image can be
located through detection of the zero crossing of the second derivative of the
edges. This approach applies especially well when the gray-level transition region
broadens gradually rather than when there is an abrupt change. Figure 12.44a
shows the case when the intensity of an edge appears as a ramp function. Parts (b)
and (c¢) of the same figure show its first and second derivatives. Note that the
second derivative crosses zero if an edge exists. Similar observations are obtained
for a signal with smooth intensity change at the edge (see Figure 12.45).

As mentioned before, the laplacian operator is more sensitive to noise. Any
small ripple in f(x) is enough to generate an edge point and therefore a lot of
artifact noises will be introduced when the laplacian operator is used alone (see
Figure 12.46b). Due to this noise sensitivity the application of noise-reduction
processing prior to edge detection is desirable when images with noisy back-
ground are processed. Notice that an edge point is different from a noise point in
that at an edge point the local variance is sufficiently large. With this property in
mind, the “false” edge points can be identified and discarded. Using a window
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f(x) —/_

{(a)

_d_f
dx
{b)

d?f zerc-crossing
A

(c)

FIGURE 1244 Edge detection via zero crossing.

(2M + 1) x (2M + 1), with M chosen around 2 or 3, the local variance a7 (/. )
can be estimated by '

1+M +M

oM + 1) kp) = mp(ky ) 12.68
(2M + 1) klgl:-:—Mkz:_/Z;M[f(kl’ 2) — me(ky. k)] ( )

o, j) =
where

1 i+M M

N ZMA’ZMf(k], ky) (12.69)
=M k=~

Ca

(a)

mf(ivj )=

d~f

dx /' \

(b)

d?f

dX2 __N———
(¢)

FIGURE 12.45 Edge detection via zero crossing.
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(b)

FIGURE 1246 Image processed with laplacian operator alone. (a) Original image;
(b) processed image.

Comparing the local variance, 67(i, ), for the point (i,j),i,j=1,2,...,N -1,
which are zero-crossing points of the laplacian V£ (i, /) with an approximately
chosen threshold will eliminate the “false™ edge points accordingly.

Figure 12.47 shows the results when a laplacian operator associated with
the local variance evaluation approach is applied to the image shown in Figure
12.46. Figure 12.48 is the block diagram of a laplacian operator associated with
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FIGURE 12.47 Result obtained after the application of the laplacian operator associated
with local variance evaluation approach to the image shown in Figure 12.46a.

local variance evaluation for use with the window shown in Figure 12.49. Figure
12.50 is another example that illustrates this method.

Line and spot detection. It is clear that lines can be viewed as extended
edges, and spots as isolated edges. Isolated edges can be detected by comparing

Estimation of 2 f{ny, my)
local variance
Jny,ny)
V2 fin,, ny) Yes 5 Yes
= Zero-crossing o ,
o point 7 1 fy)>threshold E’:‘
point
No No
Not an Not an
edge point edge point

FIGURE 12.48 Block diagram of the laplacian operator associated with local varance
evaluation.
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J-M

i-M i,j i+M

j+M

FIGURE 1249 (2M + 1)x (2M + 1) window for local variance implementation.

the pixel value with the average or median of its neighborhood pixels. A 3 x 3
mask such as

-1 -1 -1

W=1-1 g8 -1 (12.70)
-1 -1 -1

can make WTx substantially greater than zero at the isolated points. For line
detection, the compass gradient operators shown in Figure 12.51 will respond to
lines of various orientations with W/ x > Wx for all j (j # i) when x is closest
to the ith mask. For the detection of combinations of isolated points and lines of
various orientations, conceptually, we can use W,, W,, W, and W, as the four
masks for edge detection, and Wy, W, W, and Wy as the four masks for line
detection. By comparing the angle of the pixel vector x, with its projections onto
the “edge” subspace and that onto the “line” subspace, we can then decide to
which subspace (edge or line subspace) the pixel x belongs, based on which of

the angles is smaller. Obviously, magnitude of the projection of x onto the edge
subspace is

MAG g, = [(WIxXF + (WIx)” + (Wix)* + (Wix)1)'/? (12.71)

where W1'x, WIx, Wix, and WIx represent, respectively, the projections of x
onto the vectors W, W,, W, and W, Similar arguments apply to Wy, W, W,
and Wy. The magnitude of projection of x onto the line subspace is

MAGy;,, = [(WIx)* + (Wlx)? + (WIx)? + (W]x)*]'/? (12.72)
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(a)

(c)

FIGURE 12.50 Edge detection by laplacian operator associated with local variance
evaluation. (a) Original image; (b) processed with laplacian alone; (c¢) processed with
laplacian operator taking the local variance into consideration.
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-1 -1 1 -1 2 1 -1 -1 2 2 -1 -1
2 2 2 -1 2 ] -1 2 -1 -1 2 -
-1 -1 -1 -1 2 ] 2 -1 -1 -1 -1 2

(a) (b) {c) (d)

FIGURE 12.51 Compass gradient operators for line detection. (a) Responds to hori-
zontal lines; (b) responds to vertical lines; (c) responds to 45 -oriented lines; (d) responds
to 135 -oriented lines.

The angle between the pixel vector x with its projection onto the edge subspace
is

(2w N

Ix]

1

Oedge = COS™ (12.73)

and that between the vector x with its projection onto the line subspace is

[T

Ix|

By

-

0]ine =cos

(12.74)

where |x| = [Y_L (W7 x)*])'/.

12.5 THINNING

Thinning is a necessary process in most pattern recognition problems because it
offers a way to simplify the form for pattern analysis. In scanning an image,
especially a text or drawing, high enough resolution is preferred to assure that
no indispensable information is lost during digitization. In so doing, a width
of more than two pixels will appear for each line. Thinning is the process to
extract and apply additional constraints on the pixel elements that are to be
preserved so that a linear structure of the input image will be recaptured without
destroying its connectivity. See Figure 12.52 for the linear structure by medial
axis transformation, which is covered in many books and is not discussed
here.

A fast parallel algorithm for thinning digital patterns developed by Zhang
and Suen (1984) is presented here, and application of their algorithm to various
curved patterns is given. The same neighborhood notation used before for pixel
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—— o —
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FIGURE 12.52 Linear structure of the silhouette by medial axis transformation.

Sf{Jj. k) is redrawn in Figure 12.53. Let N[ f(j. k)] be the number of nonzero
neighbors of (/. k), and S[ /(. k)] is the number of 0 — 1 transitions in the

ordered sequence A4, 4,. 43, ..., A;. A,. By following this definition, we have
NLF(j. k)] =4 and S[f(/. k)] = 3 for the window

0o 0 1
L of(j.k) 1
0 1 0

If the following conditions of pass 1,

() 2=<N[f(jk]=6

2 SifG.RI=1

(3) Ay A3 -A45=0 (12.75)
(4) A3'A5'A7=0

are met, the point f(J, k) is flagged for deletion; otherwise, it 1s not changed.
Violation of condition (1) would take off the endpoint of the skeleton stroke,
while violation of (2) would cause disconnection of segments of a skeleton.
Satisfying conditions (3) and (4) as well as (1) and (2) means that they are a south
boundary point or a northwest corner point in the boundary. From the point
of view of thinning, they can be removed. Satisfying conditions (3') and (4') of

Ao A A
Ar fGk) As
As As A,

FIGURE 12.53 Neighborhood of f{ /, k).
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0 0 0 | | | I | 0
0 f.k 1 1 fG.o 1 1 f(ik) 0
0 | | 0 0 0 0 0 0
(a) (b) {c)

0 0 0 0 | I

1 fb 1 0 fULb 1

1 1 | 0 | 1

(d) (e)

FIGURE 12.54 Point patterns deletable with the thinming process. (a) Northwest corner
point; (b) south boundary pomt; (c) southeast comer point; (d) north boundary pomt;
(e) west boundary point.

(ch

FIGURE 12.55 Some thinning results obtained using the algorithm suggested by Zhang
and Suen. (a) Numeral “9" after thinning; (b) composite closed curve after thinning;
(c) composite shape after the thinning process.
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pass 2,

() 2<N[f(jk)=6
(2) SlfRl=1
(3') A, Ay -A; =0
4) A -As-A, =0

(12.76)

as well as (1) and (2) means that they are north or west boundary points or a
southwest corner point. In either case f( /., k) i1s not a part of the skeleton and
should be removed. Figure 12.54 shows some cases in which conditions (1) to (4)
imply. Figure 12.55 shows some thinning results by using this algorithm.

126 MORPHOLOGICAL PROCESSING

Morphological processing refers to an analysis of the geometrical structure within
an image. Because the operations involved in the morphological processing relate
directly to the shape, they prove to be more useful than convolution operations in
industrial applications for defect identification. Morphological operations can be
defined in terms of two basic operations, erosion and dilation.

12.6.1 Dilation

Dilation is a morphological transformation that combines two sets using vector
addition of set elements. Suppose that object A and structuring element B are
represented as two sets in two-dimensional Euclidean space. Then the dilation of
A by B is defined as the set of all points ¢ for which ¢ = a + b

Dilation: 4 @ B = {c¢|c = a + b for some a € 4 and b € B} (12.77)
or
A®B=|Ja+x (12.78)
xeB
where 4 = {a;.a,..... a,}, and B = {b,. b,..... by}, and the operation symbol

@ denotes Minkowski addition.
To illustrate the dilation operation, consider the following examples.

Example 1.

A ={(0,0), (0, 1), (0.2). (1. 1).(1.2).(2.2). (3. 1)}

B =1{(0.0). (0. D}

AD B ={(0.0).(0,1),(0,2). (1. 1), (1. 2). (2. 2). (3. 1). (0. 3). (1. 3),
(2.3).(3.2)}



Preprocessing in the Spatial Domain

y
Bl iy ©°
y y
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fx fx
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o o o
o © 0
A A®B
Example 2.

A4=1(0,0).(0,1),(0,2).(1, 1), (1,2). (2. 2). 3, )}

8 =1{(0,0).(0,1).(1.0)}

A B ={(0,0),(0.1),(0,2),(0,3),(1,0), (1, 1),(1,2),
(1,3).(2,1),(2,2),(2,3), 3. 1). (3, 2). (4. 1)}

or.yo
B X
o
0.y © ] o.yV © 0 0
% %
] 0o o 0 ] 0
o 0 1] o
0 0 1]
A 0

A®B
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Example 3.

4=1{(0,1),(0,2),(3,1),(1.2), 2, 1). (2. 3)}

B ={(0,0).(=1,0), (=1, D}

A®B =(0,1),0,2),(0,3),(1,1),(1,2),(1,3), 2. 1),
(2,3). (1, 4. (=1 D, (-1.2), (=1, 3)}

x
4
[
o~|y
B
o o
o o o o
) o ) o o o
X X
t.| o o Ll o o o
y y
A o o o
A®B
Fxample 4.
A4=1{0,1),(1,2).2,1),(2,2),3. 1), 3, 2)}
B ={(0.0),(=1,0),(-1. D}
I}
o=y
B
4] o
) o o )
o ) o o o
o] [s] o [+]
X
X
Ly o ‘L.y 0 o o
A o o
ADB
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A®B=1{0,1),(1,2),2,1).(2,2),3.1).(3,2),(=1.1),(0,2), (1, 1),
(—1,2),(0,3),(1,3).(2, 3)}

12.6.2 Erosion

Similarly, erosion is a morphological transformation that combines two sets using
vector subtraction of the set elements. Suppose that object 4 and structuring
element B are represented as two sets in two-dimensional euclidean space. Then
the erosion of 4 by B is defined as the set of all points ¢ for which ¢ + b € 4 for
every b € B. That is,

A6 B ={clc+b e Aforevery b € B} (12.79)
or
A© B ={clc=a— b forevery b € B} (12.80)

where 4 = {a,,a;5,....a,},B={b. b, ..., by}, and the operation symbol &
denotes Minkowski subtraction. Let us take an example to illustrate the erosion
operation.

Example 1.

A ={(0,2),(0,3), (1, 1),(1,2),(2,0), (2. 1), (3, 0)}
B ={(0,0), (0, 1)}

A6 B ={(0,2),(1,1),(2,0)}

Note: The dashes are deleted by erosion.

B|o~y o
X
Y o o J o
x x -
0 o o —
o (o) 0 —

A AGB
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Example 2.

(0, 1),€0,2),(0,3), (1, 1), (1,2), (1, 3). (2. 1), (2, 2), (3, 0), (3, 1)}
{(0,0), (0, 1)}

A

B| opYo
X

Y 0 0 0 aatd 0 0
X X

0 0 o 0 0

0 0 0

0 0 o

A AOB

408 =1{(0,1),(0,2),(1.1),(1,2),(2.1).(3,0)}

Example 3.
A=1{(0,1),(0,2),(0,3),(1, 1), (1,2), (1,3). (2. 1), (2,2). (3. 0). (3, 1)}
B ={(0,0),(0.-1),(-1,0)}

X
J
y| o o o Y - - =
x
o o o _ 0 o
0 0 —_ o
0 0 - Y
4 AOB
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AS B =1{(1,2).(1.3).(2,2), (3. )}
Example 4.

A={0,1).(1.1),(1.2),(2,1).(2,2), 3, 1)}
B ={(0,0),(0,1). (1, 0)}
A6 B=1{(,1),2. 1)}

ﬁ (4]

[s]

il ° i -
[s] [4) (o] —
(s} o o —_—

) -

From the examples above it can be seen that dilation by a structuring
element corresponds to swelling or expansion operation on the image. A notch in
an image will be filled by this operation. When an image is dilated with a 3 x 3
structuring element, the operation is equivalent to a neighborhood operation. By
contrast, the erosion operation provides a shrinking effect, and blobs will be
eliminated.

Frequently, these two operations (dilation and erosion) are used in pairs,
either dilation of an image followed by erosion of the dilated result, or erosion of
an image followed by dilation of the eroded result. By so doing we can eliminate
the specific image details that are smaller than the structuring element (e.g., gaps,
notches, blobs, etc.) while preserving the main geometric shape of the image.

An erosion operation on an image followed by a dilation operation on the
eroded image is called opening and is defined as

(‘(A. B) = 2[6(A, B), B] (12.81)
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The opening operation will have a smoothing effect on the image. It can be used
to smooth contours, suppress small islands, and sharpen caps of the image A.

When dilation operation on the image is followed by an erosion on the dilated
result, it is called closing and is defined as

€(A, B) = 8]%(A, B), B) (12.82)

(b)

FIGURE 12.56 Line drawing after morphological processing. (a) Original drawing;
(b) after morphological processing.
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The closing operation can be used to block up narrow channels and thin lakes. It
is ideal for the study of interobject distance. Figure 12.56 shows some results on a
line drawing after the application of morphological processing.

12.7 BOUNDARY DETECTION AND CONTOUR
TRACING

12.71 Boundary Extraction

A boundary can be viewed as a path formed by linking the edge elements
together. After being linked together, edge pixels will give more meaningful
information that can characterize the shape of an object and its geometric
features, such as size and orientation. Therefore, an edge detection algorithm is
frequently followed by an edge linking algorithm. Two edge pixels can be linked
together if they are (1) very close to each other (i.e., in the 3 x 3 neighborhood),
and (2) similar in the strength of response to a gradient operator and the direction
of their gradient vectors.

Connectivity
Three types of connectivity are considered: 4-, 8-, and m-connectivity.

4-connectivity. For a pixel p(x, y), where x and y are spatial coordinates,
the set of pixel points with coordinates

(x+1,y). (x=1», xy+1), xy-—-1) (12.83)

is said to consist of the four 4-neighbors of the point p(x, y) and is denoted by
N4(p).

8-connectivity. For the pixel point p(x,y) the set of pixel points with
coordinates

G+1y+1), x+Ly=1), G-Ly+1), x—Ly—1) (12.84)

is said to consist of the four diagonal neighbors of p(x, y) and is denoted by
Np(p). Ng(p), the 8-neighbors, are defined as

Ng(p) = N4(p) + Np(p) (12.85)

Ng(p) is a set of the eight 8-neighbors of p(x, y).

m-connectivity. Introduction of this connectivity is necessary to eliminate
the multiple path when both a 4-connected and an 8-connected neighbor



344 Chapter 12
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FIGURE 12.57 Linking of edge pixels. (a) Multiple-path connection resulted when
8-connectivity 1s used; (b) multiple-path connection eliminated when m-connectivity is
used.

appear in the situation shown in Figure 12.57. Two edge pixels are said to be
m-connected if either of the following conditions is satisfied:

(1) qisin Ny(p) (12.86)
(2) g isin Np(p) and the set N,(p) N N(g) is empty. '

12.7.2 Contour Tracing

In contour tracing we try to trace the boundary by properly ordering successive
edge points. Many algorithms have been suggested for contour tracing. One
suggested by Pavlidis (1982), implemented in our laboratory with some modi-
fication, works very well. An experimental result is given here for a miniature
spring (see Figure 12.58). This algorithm can be described briefly as follows:

1. Find an initial pixel on the boundary by scanning the image from top to
bottom and from left to right.

2. Once the initial pixel is found, we select the rightmost pixel among the
successive pixels that belong to the neighborhood set.

3. Continue tracing until the current pixel is the same as the initial pixel.

Refer to Figure 12.59 for the tracing direction notation. First search the
point along direction P — 5. If the point at that location is in R, the contour set,
set the current point at this location, and the next search direction will be
westward as P — 4. If the point at search direction P — 5 is not in R, search the
point along P — 6 direction. If it is in R, set C to this point. Otherwise, search
along direction P — 7 of the current point C (i.e., the point P). If it is in R, the
next point is found at the P — 7 direction. If none of these is tiue, change the
search direction to P — 0.
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(b)

FIGURE 12.58 Some contour tracing results obtained using the method suggested by
Pavlidis. (a) Original image; (b) contour of the object.

3 2 |
4 P — 0
¢ LN

-3 6 7

FIGURE 12.59 Notation used for contour tracing algonthm.
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12.7.3 Global Analysis of the Boundary via Hough
Transform

In this section global analysis via Hough transform will be discussed for the
extraction and fitting of geometric shapes from a set of extracted image points.
The idea behind using the Hough transform technique for geometric recognition
is simple. It maps a straight line y = ax + b in a cartesian coordinate system into
a single point in the (p, 0) plane, or

p=xcosf+ ysind (12.87)

For a point (x.y) in the cartesian coordinate plane, there will be an infinite
number of curves in the (p. ) plane (Figure 12.60). When two pomts (x,, y;) and
(x,,y;) lie on the same straight line, the curves in the (p.0) plane which
correspond, respectively, to the two points (x,.);) and (v, ;) in the cartesian
plane will intersect at a point. This intersection point determines the parameters of

Y\

~

X ;)

p
6
\ Lol
(a)
P A
xcos@ + ysin®
ysin@
3]
xcos®

(b)

FIGURE 12.60 Hough transform. (a) Cartesian xy coordinate system; (b) (p. () para-
metric plane.
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the line that joins these two points. Similar arguments apply to three collinear
points. This property, which exists between the cartesian plane and the (p, 0)
plane (or the parametric plane as it is usually called) will be useful in finding the
line that fits points in the xy plane. In short, the Hough transform approach 1s to
find the point of intersection of the p@ curves, each of which corresponds to a line
in the cartesian xy plane.

Global analysis via Hough transform can be formulated as consisting of
discretizing two-dimensional parameter space, which is (p.0) space in our
discussion, into finite intervals (called accumulator cells or two-dimensional
bins), as illustrated in Figure 12.61, where (Ppax: Pmn) 304 (Opaxs Omn) are the
expected ranges of the values of p and 6. Each of these cells in the (p, 0) space is
first initialized to zero. For each point (x;. ;) in the cartesian image plane, do the
following computation, Let p equal each of the subdivision values (say, p,) on the
p axis and then solve for the corresponding 0,. If there are N collinear points lying
on a line,

p; =xcosl; + ysin0, (12.88)

there will be N sinusoidal curves that intersect at (p,. {;) in the parametric space.
Resulting peaks in the (p, (/) accumulator array therefore give strong evidence of
the existence of lines in the image. The Hough transform can be generalized to
detect circles as described by

(x—a) + (r— b)Y =2 (12.89)

§)

bl lax

min : 0 *pmax

0

min

FIGURE 12.61 Parameter plane for use in Hough transform. Note: Number of points on
the same line equals the count number for the (p, /) count.
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We now have three (instead of two) parameters, a, b, and r, to parametrize a
circle. This results in a three-dimensional accumulator array, where each
accumulator bin s indexed by a discrete value of (a. b, #).

12.74 Boundary Detection by a Sequential Learning
Approach

This approach applies to the case where very slow spatial variations of certain
importance occur with respect to figure-background contrast. These types of
edges are often encountered in digital radiography. This method can be described
briefly as follows: Use the information of those pixels that have been classified as
on the boundary to do bayesian updating of the information on the successive
pixels for class categorization (“figure” or “background”). This updating allows
the system to “learn” the slow variations in the background level as well as on the
gradient near the boundary of the figure region.

Denote the background region with the gray level as R, and the figure
region as R,. In both regions the gray level increases (or decreases) linearly with
distance from the edge. In Figure 12.62, B and B* are, respectively, the last pixel
and the pixel preceding B which have already been classified as points on the
boundary as shown. Note the difference in the numbering of the pixels
neighboring B in the figure. The arrows B*B show the direction of boundary
tracing. If there is only one change, in the row or in the column, we follow the
arrow shown in Figure 12.62a. Otherwise (i.e., there are changes in both row and
column), we follow the tracing direction shown in Figure 12.62b. Define a loss
function

L(P,|P;)
Py P, Ps Py Ps Ps
.Pz .B -Pa -P3 'B .P7
. .T . : .\ .
.PJ .B* .P7 .P2 .Pl .B*
(@ (b)

FIGURE 12.62 Numbering of the pixels which are neighboring to B.
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as the loss (cost or penalty) due to mischoice of P, as the next boundary pixel
when it should be P,. The conditional average loss or conditional average risk
may be defined as

.
ri(X) = Zl L(P;|P,)p(Pi|x) (12.90)
that is, the average or expected loss of mischoosing x as P, when in fact it should
be some other pixel, P.i=1.2.....7.i #J. x 1s the vector with components
X{ Xy, ..., Xy, and p(P;|x) is the a posteriori probability of the next boundary
pixel being P;. By Bayes’ theorem, Eq. (12.90) becomes
7
p(x|P)p(P)
r{x) =) L(P|P)——— (12.91
0 = L LPIP) = )
If the loss function is chosen so that
_ |0 forj=1i
L(P,|P) = I j£i (12.92)
we have
P(PIp(x|P)
rix) =Yy —-——~ (12.93)
’ = p(x)

where p(P,) is the a priori probability of the next boundary pixel being P,. p(x|P,)
is the likelihood function for x given that the P, is the next boundary pixel, and
pxy=> . px|PpP).i=12..., 7 is the probability that x occurs without
regard to whether or not it is the correct next boundary pixel. Our job becomes to
find an optimal decision that will minimize the average risk (or cost). Obviously,

we will choose P, if

r < ¥ vj (12.94)
or
p(P)p(xIP)) < p(P)p(x|P)) V) (12.95)
Using normal density function for analysis.
1 1 Tl ]
x|P) = exp| —=(x—m) C '(x —m 12.96
px|P) T p[ 2( ) ( ) ( )

where m is the mean and C = o? is the variance; or

1 —(x, — m\,,-)2
p(x|P) = N expl: 7 :| (12.97)

Vi
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Taking the logarithm of the p(x|P;) and denoting it by ¢,, it follows that we will
choose P, if

<@, (12.98)

where

7 _ . 2
@ =b— 3 liln oy + (ﬁ-z}f—l'g—] (12.99)

y=1} W

Let the direction of tracing be anticlockwise, thus leaving the background R, on
its left. If the boundary pixel following B is P,, the pixel

P.eR  forv<i (12.100)
P.eR, forv>i (12.101)

¢, In (12.99) can then be decomposed as

[

— 2 7 o 2
¢; = b~ Zl:ln\/a, ‘f‘(j‘TCM] -2 [lncrw' +(j-‘—-;ni—:|
v=] b =1

(12.102)

where m;, and C, are, respectively, the mean and variance in the background
region, R, and are usually known; m,, and ¢ are the mean and variance in the
figure region, R,, which need to be evaluated for updating of the information used
to decide the next boundary pixel.

Figure 12.63 shows the process of updating the class parameters after
finding the boundary pixel P,. P,_, and P,_, are the two boundary pixels found
previously. O,,0;, and O, are the pixels needed for updating the class
parameters. Readers may refer to (Ghalli, 1988) for details on computation of
m,, and ¢,,. Figures 12.64 and 12.65 show the results of boundary detection by
this method on a radiograph of the hand and an angiograph of the head,
respectively.

A . .04
. .P, . . . -P1 . -QZ
O P O s I P

Pia . . . .Ql . -Pi—z

FIGURE 12.63 Updating of the class parameters m,, and o,,.
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(a) (b)

FIGURE 12.64 Results of boundary detection by the sequential method. (a) Radiograph
of a hand; (b) boundanes obtained. (From Ghalli, 198%.)

(a)

FIGURE 12.65 Boundary detection by the sequential leaming method. (a) Angiograph
of a head; (b) boundaries obtained. (From Ghalli, 1988.)
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128 TEXTURE AND OBJECT EXTRACTION FROM
TEXTURAL BACKGROUND

Texture analysis is one of the most important techniques used in the analysis and
classification of images where repetition or quasi-repetition of fundamental image
elements occurs. Such characteristics can easily be seen from remote sensing
images obtained from an aircraft/satellite platform to images of cell cultures or
tissue samples through microscope. So far, there is no precise definition of
texture. It is evaluated qualitatively by one or more of the properties of
coarseness, smoothness, granulation, randomness, and regularity. Nevertheless,
the tonal primitive property and the spatial organization of the tonal primitives
characterize a texture fairly well. There are three principal approaches to the
texture description of a region: statistical, spectral, and structural.

Among the statistical approaches are autocorrelation functions, textural
edgeness, structural elements, spatial gray-tone cooccurrence probabilities, gray-
tone run lengths, and autoregressive models. Statistical approaches characterize
the textures as smooth, coarse, grainy, and so on.

Spectral techniques (optical transform and digital transform) are based on
properties of the Fourier spectrum. The image is analyzed globally by identifying
the percentage energy of the peak. Calculation of the discrete Laplacian at the
peak, area of the peak, angle of the peak, squared distance of the peak from the
origin, and angle between the two highest peaks are involved.

Structural approaches deal with the primitives and their spatial relation-
ships. A primitive is usually defined as a connected set of cells characterized by
attributes. The attributes may be gray tone, shape of the connected region, and/or
the homogeneity of the local property.

“Spatial relationships” refers to adjacency of primitives, closest distance
within an angular window, and so on. According to the spatial interaction
between primitives, textures can be categorized as weak textures or strong
textures. To distinguish between these two textures, the frequency with which
the primitives cooccur in a specified spatial relationship is a good measure. Some
investigators suggested using the number of edges per unit area (or edge density)
for a texture measure. Others suggested using the gray-level run lengths as
primitive, or using the number of extrema per unit area (extreme density) for a
measure of texture.

12.8.1 Extraction of theTexture Features

As mentioned in previous paragraphs, many feature extraction methods have been
proposed. One of these {called cooccurrence or gray-tone spatial dependence)
will be discussed in more detail. This method considers not only the distribution
of intensitics, but also the position of pixels with equal or nearly equal intensity
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values. This cooccurrence matrix evolves from the joint probability density
function of two pixel locations and is a second-order statistical measure of
image intensity variation. As we will see later, it provides the basis for a number
of textural features.

If we define the position operator P as follows:

10 Ax;

801

Ax,y

we obtain the 3 x 3 matrices shown in Figure 12.67 for the sample images shown
on Figure 12.66. Note that the size of the cooccurrence matrices is determined
strictly by the number of distinct gray levels in the input image. If every element
in the matrix is divided by the total number of point pairs in the image that satisfy
the position operator J,. J,, or 4, as indicated, a new matrix / (called the gray-
level cooccurrence matrix) is formed, with the element 4;; as the estimate of the
joint probability that a pair of points satisfying the position operator will have
values (z,.z,). By choosing an appropriate position operator, it is possible to
detect the presence of a given texture pattern. Nevertheless, this cooccurrence
matrix H does not directly provide a single feature that may be used for texture
discrimination.

0000 1 1 0000
000 11 11000
00 1 1 2 21100
o1 1 2 2 221 10
11 2 2 2 22 2 1 1
(a) (b)

01210 P22
01210 121 21
01210 121 21
01210 121 21
01 210 P21 021
(c) (d)

FIGURE 12.66 Sample images with three gray levels, z, = 0,2, = |, and z, = 2.
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()]

FIGURE 12.67 Sample cooccurrence matrices corresponding to textures shown in
Figure 12.66 with position operators &,,.d,,. and d,,. (a) For the image shown in
Figure 12.66a; (b) for Figure 12.66b; (c) for Figure 12.66¢; (d) for Figure 12.66d;
(e) for Figure 12.66a; (f) for Figure 12.66b; (g) for Figure 12.66¢c; (h) for Figure
12.66d; (i) for Figure 12.66a; (j) for Figure 12.66b; (k) for Figure 12.66¢; (I) for
Fig. 12.66d.

A set of descriptors have been proposed by Haralick (1978) to be denved
from the gray-level cooccurrence matrix as textural features. They include:

1. Uniformity: DI (12.103)
7

i

2. Entropy: — 2> hylogh,; (12.104)
1oy

3. Maximum probability: Max £;; (12.105)
N -
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4. Contrast: Y- Nhy (12.106)
iy
: hy;
5. Inverse difference moment: Ty (12.107)
i =y

12.8.2 Segmentation of Textural Images

Segmentation of an image into homogeneous regions is one of the many
intriguing topics in image processing. “Homogeneous” refers to the uniformity
in some property, such as intensity or gray level, color, or texture. In most
applications an image is segmented by the intensity criterion. But for some
applications, segmentation by intensity criterion does not give satisfactory results,
since an image such as a human portrait or outdoor scene gives a nonuniform
intensity region but a homogeneous texture region.

In this section we discuss textural image segmentation without supervision.
That is, no a priori knowledge or operator guidance is available, and no pixel
classification based on feature statistics gathered over training areas can be
applied. In what follows, a method using cooccurrence matrices as features for
image segmentation is discussed. They randomly take 40 N x N subimages from
the 256 x 256 original image. The value N is to be determined experimentally.
From these subimages they computed cooccurrence matrices of size G x G,
where G is the number of gray levels in the image. Then divide the cooccurrence
matrix into n equally sized squares and use the average value of the matrix
elements in each square to form one component of the feature vector, such that a

multidimensional feature space R" is formed with the feature vector represented
as

x=| . (12.108)

These feature vectors will cluster in the feature space if different textures appear
in the image. The feature space R" will then be partitioned into subspaces as
Ly, Ly ..., Ly, each corresponding to a texture class 1,2, ..., k. Parkkinen and

Oja use rules similar to the discriminant functions discussed in Chapters 3 to 5 for
the classification of texture images:

If DF, > DF,. Vj not equal to 7. then x € w, (12.109)

where DF stands for the discriminant function.

Worthy of mention is a work by Davis and Tychon (1986). In their research
they used two statistical measures to generate a second-order picture from the
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original textural image. Then they processed the second-order image to produce
boundaries between adjacent texture regions. The first measure they used is to
determine the frequency characteristics pertaining to the texture. The more the
rise and fall of the picture element values, the finer the texture. The second
measure is to capture information on the contrast in a texture. This measure is
defined as the means of the absolute differences between adjacent points:

o=y 10

n—1
where d(i) is the gray-level difference of the adjacent pixels and is

i=1,2,....n (12.110)

diy=pl) —pli+1)  i=12,....n (12.111)

and p(i) is the gray level of the point i. A high-contrast picture will have larger
differences in gray levels and therefore produce a higher value for C.

Four vectors about each point in a textural scene in four orientations [0°
(horizontal), 45° (right diagonal), 90° (vertical), and 135° (left diagonal) are to be
analyzed with these two measures, and eight values are produced for each point in
the textural image for use in the construction of its second-order picture. When

(b)

FIGURE 12.68 Textural image for segmentation. (a) Test image consisting of two
different textures; (b) boundaries between these two textures extracted. (From Davies and
Tychon, 1986.)
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more than one binary edge picture has been created, they are OR’ed together to
produce a resultant edge picture. Figure 12.68a shows a test image containing two
different textures. The boundaries between the two different textures extracted by
the method are shown in Figure 12.68b.

PROBLEMS

12.1 Write a program to perform the linear contrast stretching gray-level
transformation shown in Figure P12.1. Take any picture; scan and
digitize it to obtain a 512 x 512 image. With that image as a large
data set, enhance it by a suitable contrast stretching transformation.
Evaluate this linear contrast stretching algorithm by comparing the
processed image with the original picture,

4
255

gi{x,y)

255
-

f(x, ¥)
FIGURE P12.1

12.2 Write a program to perform the brightness stretching on the
midregion of the image gray levels as shown in Figure P12.2, and

process any one of the images given in Appendix A with your
program.

g{x, y)’

255

127 ferenennenas

255
(X, y)

Nceccasas

FIGURE P12.2
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12.3

12.4

12.5

12.6

Chapter 12

Write a program to perform the bileveling gray-level transformation
shown in Figure P12.3, and process any of the images given in
Appendix A with your program.

4 255 e
gix. y)
255
0 -
f(x.y)
FiGURE P12.3

Write a program to perform the bright region (or dark region) gray-
level transformation shown in Figure P12.4, and process any one of
images given in Appendix A with your program.

gy 4
255

255
0 > 1(x.)

FIGURE P12.4

Write a program to perform level-slicing contrast enhancement to
isolate a band of gray levels as shown in Figure P12.5, and process
any one of the images given in Appendix A with your program.

Use any one of the images given in Appendix A to alter the data by
processing each pixel in the image with the deterministic gray-level
transformation shown in Figure P12.6, where 0 = dark and
255 = white. Use the altered data obtained as an example image
for enhancement processing.

(a) Obtain a histogram of the example image.

(b) Obtain a processed image by applying the histogram equaliza-

tion algorithm to these example image data.
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255
gix, y)
255
o)
X,
0 flx.y

FIGURE P12.5

(¢) Evaluate the histogram equalization algorithm by comparing
the example image with the image after histogram equalization.

(d) Suggest a histogram specification transformation and see
whether this can further improve the image.

255

0

FIGURE P12.6

285

12.7 Given that an image has the histogram p,(r) as shown in Figure
P12.7a, it is desired to transform the gray levels of this image so that

FIGURE P12.7
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12.8

12.9

Chapter 12

an equalized histogram is obtained. Find the transformation function
T(r).

An image has a PDF on the original gray-level scale as shown in
Figure P12.8. A transformation function

T(r) = [Smax - Smm]P,.(i‘) + Smm

is selected. What will be the PDF of the image on a new gray-level
scale.

|

FIGURE P12.8
If the desired PDF is
P,(s) = ae 4155wl and §> Son

Find T'(r) in terms of P,(#).

12.10 Using the histogram thinning algorithm shown on Fig. 12.27,

12.11

perform thinning on the histogram shown in Figure P12.10.

FIGURE P12.10

Corrupt one of the images given in Appendix A with gaussian noise
(or some other forms of noise). Use it as an input image and process
it with various masks, as shown in Figure 12.28.
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12.12

12.13

12.14

12.15

12.16

12.17

Load any one of the images given in Appendix A into the computer
and blur it with the following mask:

With this image as an input image, obtain an edge enhancement
image with

Glfe.y] G =T
flx.y) otherwise

glx,y) = {

where G[ f(x.y)] is the gradient of f at the point (x.y) and T 1s a
nonnegative threshold. Compare the image after processing with the
original image and note the improvement in image quality.

Repeat Problem 12.12 with another image from Appendix A or a
grabbed image with a CCD camera.

Write programs for Robert’s cross-gradient operator and the Sobel
operator. Use these two problems to enhance the edge of the images
from Problems 12.12 and 12.13. Compare and discuss their effec-
tiveness.

Discuss the relative merits of the laplacian operator and the laplacian
operator associated with local variance evaluation.

Write a program to implement the thinning algorithm for the figures
shown in Figure P12.16.

FIGURE P12.16

Dilate the figure shown in Figure P12.17a with the figure shown in
Figure P12.17b.
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T

Fl
alajaloiwlalals

(a) {b)
FiGURE P12.17

12.18 Find the Hough transforms of the figures shown in Figure P12.18.

{0

FiGure P12.18
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Pictorial Data Preprocessing and
Shape Analysis

Pictorial data input for processing by computer falls into four different classes: (1)
full gray-scale images in the form of TV pictures; (2) bilevel (black-and-white)
pictures, such as a page of text; (3) continuous curves and lines, such as
waveforms or region contours; and (4) sets of discrete points spaced far apart.
In this chapter our discussions focus on images in the second, third, and fourth
classes. Although when in printed or displayed form, images of the first class are
also of bilevel microstructure, they are actually represented as full gray levels
instead of simply black and white. Their gray levels are approximated by a
halftone approach. The halftone technique is successful because the human visual
system spatially integrates on and off the intensity value to create a perceived
gray scale. We have discussed halftone images in previous chapters.

13.1 DATA STRUCTURE AND PICTURE
REPRESENTATION BY A QUADTREE

It is well known that a large memory is required to store the pictorial data. For
example, to store a frame of TV pictures with ordinary resolution, we would need
512 x 512, or 262,144, bytes. In addition to the volume required for storage of

363
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the pictorial data, access to memory is also an important problem for considera-
tion,

A quadtree is a popular data structure in both graphics and image
processing. It is a hierarchical data structure that provides quick access to
memory for data retrieval. A quadtree is based on the principle of recursive
decomposition of pictures. This technique is best used when the picture is a
square matrix A4, with dimensions of a power of 2, say 2". Then matrix 4 can be
divided into four equal-sized quadrants, 4,. A4,, 4;, A;, whose dimensions are
half that of 4. This process is repeated until blocks (possibly single pixels) are
reached that consist entirely of either 1’5 or 0’s. In this process of successive
matrix decomposition, quadrants consisting of all white or all black pixels remain
untouched. Only quadrants consisting of both black and white pixels are to be
decomposed further. In other words, terminal nodes correspond to those blocks of
the array for which further subdivision is unnecessary. The levels can be
numbered starting with zero for the entire picture down to »n for single pixels,
as shown in Figures 13.1 and 13.2. Figure 13.3 shows a simple object coded with
this quadtree structure. Black and white square nodes represent blocks consisting
entirely of 1’s and 0’, respectively. Circular nodes, also termed gray nodes,
denote nonterminal nodes.

The pixel level is the lowest level in the quadtiree representation of an
image. 4.B,C.D. ..., P in Figures 13.4 and 13.5 are at a higher level. 1, II, III,
and IV are at an even higher level. The highest level, labeled as zero, represents
the entire image. For an image of 8 x 8 pixels in our example, there are three
levels. In general, for an image of 2" x 2" pixels there will be n levels.

Conversion from a raster to a quadtree is conducted row by row starting
from the first row and leftmost pixel. Take a 8 x 8 pixel image (Figure 13.6) as an
example to illustrate the procedure.

1. Start from the first pixel of the first row (i.e., pixel 1).

2. When the first pixel is processed, we add a nonterminal node 4, which
is at a higher level. At the same time, we add three white nodes as its
remaining sons, as shown in part (c) of Figure 13.7.

3. Ascend a NW link to reach node 4 and descend from 4 again to the NE
son of 4, or the eastern neighbor of node 1 (i.e., node 2). This will be
the eastern edge of the block.

4. Try to add another eastern neighbor to it. If a common ancestor does
not exist, a nonterminal node / is added, with its three rematning sons
being white (see Figure 13.7f).

5. Descend along the retraced path. During this descent, a white node is
converted to a gray node and four white sons are added (see Figure
13.7g).

6. Color the terminal node appropriately (see Figure 13.7g and h).
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003 003 00 01 13 11

04 03 1313

2q 21 3d 31

FIGURE 13.1 Numbering in the quadtree decomposition.

7. Go to the first pixel of the second row (even-numbered row), pixel 9 in
this example, and repeat the process outlined in the preceding steps.
8. Merge the four pixels NW, NE, SW, and SE if they are all black.

Figures 13.8 and 13.9 shows the quadiree after processing the first and
second rows of Figure 13.6.

13.2 DOT-PATTERN PROCESSING WITH
VORONOI APPROACH

When processing visual information, dot patterns other than gray level or color
images appear frequently. For example, the nighttime sky is a natural dot pattern.
Locations of landmarks in cartography are also detected as dot patterns by
airborne sensors. Objects in an image represented by locations of their spatial
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0 (Root node)

/oc!z\ooa 01431}“3 4&23 030/03( bas
ooooZ;/oooz 0003 0130 013 \ME 0133
/I

01310 . .01313

01311 01312/ \\

013130 .7 . . . 013133

013131
/\\013132

0131300 0131303

FIGURE 13.2 Quadtree and its addressing notation. Length = 27 = 128 pixels.

features, such as spots, corners, and so on, are also examples of dot patterns.
Edge pixels obtained after edge detection also appear in the form of dots (edge
pixels). Methods such as edge detection followed by edge linking, minimum
spanning tree, and the Delaunay method are found to be effective in treating dot
patterns. However, in many other applications, for example, (1) dot patterns with
varying density, such as those shown in Figure 13.10; (2) dot patterns that appear
in the form of a cluster with direction-sensitive point density, such as that shown
in Figure 13.11; (3) dot patterns with curvelike and/or necklike clusters, as
shown in Figure 13.12; and (4) dot patterns in the form of globular and
nonglobular clusters, as shown in Figure 13.13, another method, called Voronoi
tessellation, is found to be more effective.

13.2.1 Voronoi Tessellation

Voronoi tessellation consists of a Voronoi diagram together with mcomplete
polygons on the convex hull. Figure 13.14 shows Voronoi polygons, which are
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{:\ terainal node,
either black
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; or white.
}
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g%//?1 02 03 IET::;:\\ 1112
nln\ B I/XJ\\
010 011 012 013 100 101 102 103 110 111 112 113
(b)

FIGURE 13.3 (a) Simple object; (b) its quadtree representation.

polygons (regions) containing dot points. Voronoi polygons associated with
Voronoi neighborhood relationships among points can be used to analyze dot
patterns. The same diagram (see Figure 13.14) includes Delaunay tessellation, the
edges obtained by joining each point with 1its neighbors.

The Voronoi neighborhood is not defined on the euclidean plane, nor is it
drawn based on the fixed radius concept. The reason for not so doing is the fact
that approaches with the fixed radius concept are not sensitive to variations in the
local point density. It is not difficult to note that in a dense dot pattern area, a
point may have a large number of neighbors, whereas in a sparse region it may
not have even a single neighbor. For that reason the fixed radius approach cannot
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FIGURE 13.4 Recursive decomposition of an image for quadtree representation.
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FIGURE 13.5 Hierarchical data structure in quadtree representation.
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FIGURE 13.6 An 8 x 8 pixel image.
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(e} (f) (g)
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FIGURE 13.7 Intermediate trees in the process of obtaining a quadtree for the first part
of the first row of the image shown in Figure 13.6. (From Samet, 198%))
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-

FIGURE 13.9 Quadtree after processing the second row of Figure 13.6. (From Samet,
1981)

FIGURE 13.10 Dot pattern with varying intensity. (From Ahuja, 1982.)
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FIGURE 13.11 Dot patterns in the form of a cluster with direction-sensitive point
density. (From Ahuja, 1982.)
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FIGURE 13.12 Dot patterns in the form of (a) a curvelike cluster and (b) clusters with a
neck. (From Ahuja, 1982.)
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FIGURE 13.13 Dot patterns in the form of (a) globular and (b} nonglobular clusters.
(From Ahuja, 1982.)
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FIGURE 13.14 Voronoi tessellation defined by a given set of points. Dashed lines show
the corresponding Delaunay tessellation. (From Ahuja, 1982.)

reflect the local structure very satisfactorily. Voronoi polygons are suggested for
this purpose, to characterize various geometrical properties of these disjoint
pictorial entities.

Let us take an example to illustrate how to use a Voronol diagram to detect
the boundary. Generally speaking, the boundary segments form multiple closed
loops, and it is our intention to recover the medial axis of these closed boundartes.
Let us use Voronoi diagram approach to perform this task. Consider a two-line
segment image. Its Voronoi diagram can be constructed as shown in Figure 13.15,
where a, b, ¢, and d are the endpoints of the two line segments ab and cd. The
dashed curve (called a Voronoi edge) is the locus of the points that are equi-
distant from the two line segments. B(a, ¢), B((a, b), ¢), B((a. b), (c. d)),
B({(a, b), d), and B(b, d) represent, respectively, the subsegments of the curve,
with B(a, ¢), B(b, d) being point-to-point subsegments, B((a, b), ¢},
B((a, b), d) being line-to-point subsegments, and B((a, b), (¢, d)) being the
line-to-line subsegment. Note that the line-to-line subsegment is a line subseg-
ment, while the others are curved subsegments. Figure 13.16a to ¢ shows the step-
by-step process of extracting the medial axes from the disjoint boundary
segments. The steps are self-explanatory.
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/ PP seament:
.I'.‘f{th-t}, Bla,c). B(b.: d)
/ PL segment:
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FIGURE 13.15 Voronoi diagram of two line segments. (From Matsuyama and Phillips,
1984.)

\Jl

A‘b

(d)

FIGURE 13.16 Step-by-step process in extracting the medial axis from the disjoint
boundary of a region. (a) Disjoint boundary segments; (b) Voronoi diagram; (c) extracted
medial axis of the region; (d)—(f) three major medial axes and regions expanded from them
(From Matsuyama and Phillips, 1984.)
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13.3 ENCODING OF A PLANAR CURVE BY CHAIN
CODE

For some applications it may be adequate to represent a curve as a sequence of
pixels. But for many other cases it might be much more desirable to have a more
compact form to represent them, even with a mathematical description. The term
“curve fitting” is usually used to refer to the process of finding a curve that passes
through a set of points. A lot of studies has been devoted to curve fitting, namely,
polynomial curve fitting, piecewise polynomial curve fitting, B-splines, polygonal
approximations, concatenated arc approximations, and so on. We discuss some of
them below. Figure 13.17 shows a common chain code notation using 8
directions and 48 directions. Figure 13.18 shows a skeletonized graph and its
chain coding, where the exponents denote repeated symbols.

134 POLYGONAL APPROXIMATION OF CURVES

Polygonal approximation for a set of data points as suggested [see Pavlidis (1982)
for a rigorous treatment of this subject] can be described briefly as follows.
Subdivide the data points into groups, each of which is to be approximated by a
polygonal side. Start by drawing a line L, to connect the first point P, and the last
point P; of the first group of points of size ko, as shown on Figure 13.19. If the
collinearity test succeeds on this group of points (k, in size), a new line L, is to be
drawn to connect point P, to point P;. Py is then established as a breakpoint, and
the new line L, becomes the current line. A merge check then follows by
comparing the inclination angle of L, with that of line L,. If the difference
between these two inclination angles is small, a new line L, instead of L, and L,,
will be used to approximate these two sets of points. Otherwise, L, will be kept as
a polygonal side. Repeat the process from the endpoint of L, point P;, until the

N\ 17 /
:li ! »10 .\:5\ //é'/—"
s &3 ”17 \\'
AN

() "7 - \ N

(b)
FIGURE 13.17 Chain codes. (a) Eight directions; (b) more than eight directions. (From
Freeman, 1973.)
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FIGURE 13.18 Graph represented by an eight-direction chain code.

complete set of the data points is successfully approximated by the polygonal
sides.

Some mathematics are involved in this approximation. It is clear that the
equation for a line passing through two points (x;, y,) and (x,, y,) Is

_ x—x2 xl—x
Y=y + ¥, (13.1)
Xy — X Xy — X3

It follows that the line used to approximate the points (x,. y;), (x4, Viyr),
o o. (xg, ) will be given by

XMy —y) H Y0 —x) +yx, —yx =0 (13.2)
L, Py
L,
Py Ly Py

FIGURE 13.19 Polygon approximation approach.



376 Chapter 13

For a point (i, v) that does not lie on the line, from geometry this point will be at
a distance DIST from the line, where

DIST = u(yi - yk) + v(xk - X,) + yix, — Y, '
ﬁvf —y)* + (x — x)

Sklansky and Gonzalez (1978) have suggested another method for the approx-
imation of digitized curves. Their method is based on the minimum perimeter
polygonal approximation. Suppose that we have a set of data points, say 4, and
are to find a polygonal approximation B for these data points such that the
Hausdorff—euclidean distance

(13.3)

H(A, B) = MAX[MAX MIN [x; — x|, MAX MIN |x, —le] (13.4)
neB  x,ed x €4 x,eB
between the set of points 4 and the curve approximation B is less than a

prespecified value ¢, where |x; — x,| is the euclidean distance between x| and x,
and is

oy — x| = [y — %20) + (g — 300712 (13.5)

Figure 13.20 describes the process. Keep in mind from the previous discussion
that the distance from any one point to the side of the polygon should be less than
¢. So the first step in this process is to construct circles with the data points as
center and ¢ as radius. As shown in Figure 13.20, 1,2,3,...,9 are the data
points, #; is the top tangent to the circle with point 3 as center and ¢ as radius, and
by is its bottom tangent. Any line segment lying inside or tangent to all the
circular apertures is a valid line segment for the polygon we are looking for. But
to obtain an optimum line segment for these data points, one more step should be
taken.

FIGURE 13.20 Rectified minimum perimeter polygons (RMPP) finder. (From Sklansky
and Gonzalez, 1980.)
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Draw two tangents, denoted by # and b,, from the source point to the
circular aperture of each point /. In Figure 13.20 only #; and b, are shown. Two
cones, TCONE, and BCONE,, are formed, which are defined, respectively, as the
angles between ¢; (or b;) with the positive x direction. Find the smallest value of
TCONE, (BCONE)), i=1,2,3,..., N, inside which all the segments between
the current data point and source point lie. The line segment corresponding to the
smallest values of BCONE will be the optimum segment.

13.5 ENCODING OF A CURVE WITH B-SPLINE

A spline is a piecewise polynomial function used to describe a curve that can be
divided into intervals. Each of these intervals is represented individually by a
separate polynomial function, as given by

k-1
px) =p1 () + 3 glx —x)" (13.6)

=1

where (x — x,)" is zero when (x — x,) < 0, and ¢ is a constant proportional to the
mth derivative of p(x) with respect to x at x = x,. The piecewise polynomial
function is called a linear spline when m = 1, a quadratic spline when m = 2, and
a cubic spline when m = 3. In many practical applications, another form of spline
representation, called B-splines, is used. This B-spline is zero at all subintervals
except m + | of them. The linear and quadratic B-splines are defined, respec-
tively, as

X — X,
RS g |
X — X
B, (x) = ) (13.7)
& Xy — X <y <
X x<x
X Yol H1l =Y =442
and
(x — x,)’°
; ) : X, ZXxX <X (13.8a)
(-\H-?. - "‘1)(-ri+l - -\1)
(x — xi)(xl+2 —x) ("‘H—B —x)x — xH—l)
B;>(x) = | (2 = X2 — X)) (s — X)) — x4 )
X S, (13.8b)
(x1+'§ - x)2
: X2 <x <x, (13.8¢c)
(x1+3 - xi+l)(xr+3 - x:+2) 2 -
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B; \(x)
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Xf 41 Xi+2 Xi+3 X+ 4
(c)

FIGURE 13.21 B-spline. (a) Linear (m = 1); (b) quadratic (m = 2); (c) cubic (m = 3).

From Eqgs. (13.7) and (13.8) it is not difficult to see that the mth-degree B-spline
can be generated via the following recursion:

X=X Xipem+l — X
Bl’, m(x) = ‘—_'Bj, m—l(x) + —_'—+—+_1_'"t—Bi+l, m—](x) (139)

wm & Xipmet — Figl

Some examples of linear, quadratic, and cubic B-splines are shown in Figure
13.21. Figure 13.22a shows a set of sampled spline boundary points, and Figure
13.22b shows its quadratic B-spline interpolations.

13.6 SHAPE ANALYSIS VIA MEDIAL AXIS
TRANSFORMATION

Shape analysis is a fundamental problem in pattern recognition and computer
vision. With the term “shape” we refer to the invariant geometrical properties
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.. o4
(a) (b)

FIGURE 13.22 B-spline curve fitted through points of original boundaries. (a) Given
points; (b) quadratic B-spline interpolation.

among a set of spatial features of an object. The contour of the silhouette conveys
a lot of information about these geometrical features, which are useful for the
analysis and recognition of an cobject. This information 1s normally considered to
be independent of scale and orientation. Many different approaches have been
suggested for pictorial shape analysis and recognition. Some of them are
discussed below.

Medial axis transformation is a method proposed for shape description by
Blum (1964) and studied by many others. The medial axis of a figure is also
called a symmetrical axis, or the skeleton of a figure, which is the union of all the
skeletal points. A skeletal point is defined as follows. Given a region R, say a
simple rectangle having a boundary B as shown in Figure 13.23a, the skeletal
point is defined as that point which has two equal nearest neighbors on B (i.e., no
other points will give a distance that is less than the one between the point and its
two neighbors). This describes a circle that is completely enclosed by the figure,
as shown in Figure 13.23. From this definition it is obvious that the circles
centered at points on the axis with radii specified by the radius function are
tangent to at least two boundary points. With such a representation it is then
possible to recover the original figure by taking the union of all the circles
centered on the points comprising the axis, each with a radius given by a radius
function. Obviously, computation of the medial axis invoived will be on the order
of the square of the number of the boundary edges of the figure.
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@

(a) (b)

FIGURE 13.23 Some shapes and their medial axes. (a) Medial axis of a rectangle;
(b) medial axis of a telocentric chromosome shape.

Another way of obtaining the medial axis transformation of a planar shape
is via a Voronoi diagram. First draw the Voronoi diagram of the polygon as shown
in Figure 13.24. Denote those vertices of the polygon as convex vertices when the
internal angle at the vertex is less than 180°, and as reflex vertices if the internal
angle at that vertex is greater than 180°. So in Figure 13.24, vertices within the
dashed circles are reflex vertices. Then remove all the Voronoi edges incident

with each reflex vertex. We will obtain a medial axis of the polygon as shown in
Figure 13.25.

13.7 SHAPE DISCRIMINATION USING FOURIER
DESCRIPTOR

In this section we show that Fourier descriptors (FDs) can be used on a
quantitative basis for the description of a shape. After normalization, FDs can
be matched to a test set of FDs regardless of its original size, position, and
orientation. A Fourier descriptor (Persoon and Fu, 1977) is defined as follows.
Refer to Figure 13.26 and assume that the curve is a clockwise-oriented closed
curve and is represented parametrically as a function of arc length / as (x(/). y(/)),
and that the angular direction of the curve at point / is represented as 0(/), with the
arc [ varying from 0 to L. When the curve is moving along from the starting point
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FIGURE 13.24 Polygon and its computer-generated Voronoi diagram. (From Lee,
1982.)

to point /, there will be an angular change in direction of the curve (between the
starting point and the point /). Let us denote this angular change by ¢(/), where

P(h) = 0(7) — 6(0)

For a closed curve, ¢(0) = 0 and ¢(L) = —2x. In other words, ¢(/} changes
from 0 to —2n. We can then define a new function ¢*(¢) such that ¢*(0) =
¢*(2m) = 0 with ¢ domain in [0, 27n] as follows:

P*(1) = ¢(‘2L_’) +1 (13.10)
n

It is not difficult to see that ¢p*(¢) = 0 when ¢t = 0, and ¢™*(¢) also equals 0 when
t = 2m, due to the fact that there is a net angular change of —2n for a closed
curve.



382 Chapter 13

FIGURE 13.25 Computer-generated medial axis of the polygon shown in Figure 13.24.
(From Lee, 1982))

x(h), v(1)

x(0), y(O)

iy
/

FIGURE 13.26 Definition of the Fourier descriptor.

'8(0)
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When the function ¢*(r) is expanded in a Fourier series and the coefficients
are arranged in the amplitude/phase angle form, Eq. (13.10} becomes

O*et) = 1y + iA,\.cos(kr—ock) (13.11)
k=1

The complex coefficients (4, x;). &k =1,2,3..... are called Fourier descrip-
tors (FDs) of the curve (or boundary when describing the shape). These
coefficients can be used for the analysis of shape similarity or symmetry.
Figure 13.27 shows the effect of the truncation and quantization of the Fourier

L FD real part

e
)

0 PR Shdd

-59.13
1

128
69.61¢

FD imaginary part

{a)

-69.61

1 128
(&)

{c) {d)

FIGURE 13.27 Fourier descriptor. (a) Given shape; (b) FDs, rcal and imaginary
components; (c) shape derived from largest five FDs; (d) derived from all FDs quantized
to 17 levels each. (From Jain, 1989.)
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FIGURE 13.28 Shapes obtained by using Fourier descriptors. (Courtesy of T. Wallace,
Electrical Engineering Department, Purdue University.)

descriptor. Figure 13.28 shows some shapes obtained by using a Fourier
descriptor.

13.8 SHAPE DESCRIPTION VIA THE USE OF
CRITICAL POINTS

The basis of this method is to divide a curve into segments and then use relatively
simple features to characterize the segments. The key to this method is an
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effective segmentation scheme. What we expect on the scheme are that (1) some
critical points should be properly chosen and detected for use with segmentation,
and (2) the curve description should be independent of scale and orientation of
the curve.

Freeman (1978) has expanded the critical point concept. In addition to the
traditional maxima, minima, and points of inflection, he suggests including the
discontinuities in curvature, endpoints, intersections (junctions), and points of
tangency as critical points, since these points are all well defined to a certain
degree and fortunately are not affected by scale and orientation.

Use of a line segment scan was suggested to extract the discontinuities.
Consider a chain to be represented by [a;]].4; € [0. 1. ..., 7]. Define a straight-
line segment L} such that the initium of @;_,,, is connected to the terminus of a,.
If a,, and a;, represent the x and y components of the chain links, respectively,
L will be given by

L = [ + ()7 (13.12)
where
X:\ = Z a
j=i—s+1

and

and the inclination angle of the line segment is
B

) =tan~' L .
(; = tan X (13.13)

!

Variation in the angle €, as L! scans over the chain, will provide the inside of the
shape of the curve. A plot of J; versus i with §; defined as
6 =0 — 0,

is shown for a particular example shown in Figure 13.29a. This plot is
independent of orientation.

13.9 SHAPE DESCRIPTION VIA CONCATENATED
ARCS

In previous sections several approaches have been introduced for the effective
representation of a curve. Nevertheless, the representation still looks cumbersome
from a mathematical point of view. In this section an algorithm is designed to
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Grid size

(@)

(b)

FIGURE 13.29 Line segment scan. (a) Chain being scanned (s = 5); (b) plot of
incremental curvature as a function of /. (From Freeman, 1978.)
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generate automatically a concise and rather accurate representation for curves in
terms of concatenated arcs. The major idea involved in this approach is to detect,
efficiently and effectively, the appropriate breakpoints on the curves for conca-
tenated sections.

It is not very difficult to visualize that any composite curve can be
approximated with satisfactory accuracy by a finite number of piecewisely
concatenated circular arc segments exhibiting first-degree geometric continuity.
(Note that a straight-line segment may also be considered as a circular arc in the
sense that it has a radius of infinity in length with a center located at infinity.) The
ellipse abcd shown in Figure 13.30a, for example, can be approximated by four
atc segments @b, ¢éd, be, and da. Arcs 4b and éd can be drawn with radius r; and
centers ¢, and c, located on the major axis of the ellipse, while b¢ and da can be
drawn with r, and centers ¢; and ¢y, respectively. Similarly, we can find arcs to fit
different portions of a parabola, whose equation is given by y* = ax (see Figure
13.30b). For the portion P,OP, of the parabola, where x* is very small in
comparison with y* (which is usually the case near the vertex of a parabola), that

Y} /
Py

(a) (b)

(c) (d)

FIGURE 13.30 Approximation of curves by concatenated arcs. (a) Ellipse; (b) parabola;
(c, d) composite curves. (From Honnenahalli and Bow, 1988.)
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portion can also be approximated by a circular arc. A similar approximation can
be applied to other curves, such as higher-order polynomial curves and trans-
cendental curves. By following these arguments, any interpolation of an ordered
set of points by a smoothed curve (see Figure 13.30c and d) can be broken down
into a sequence of simpler curve segments, and accordingly can be approximated
by concatenated arcs. Note that the accuracy of the approximation achieved
depends greatly on the process of segmentation on the curve. More specifically, it
depends on how accurate the breakpoints can be detected.

Our problem then becomes the following. Given a curve (any kind of
curve), we are to segment it into several portions such that each can be
represented by a circular arc. Now the first thing we ought to do is to locate
accurately all the breakpoints, which are defined in this section as the points at
which circularity of the curve changes.

Consider [x,. y;].i=1,2,....n, to be the data points on the curve. Let
P,. P, and P,, be the three guiding points used for breakpoint searching. If the
number of consecutive points in curve section PP, equals that in P,P,,, and all
these data points have the same rate of inclination change, # = |d¢/dt|, of the
tangents, they must lie on the arc drawn with the center situated at the intersection
of perpendicular bisectors of the two chords P, P, and P,P,,. By following this
argument, an algorithm can then be proposed:

1. Start from the first point, P,, on the curve.

2. Select points P; and P, such that the number of points between P, and
P; equals that between P, and P,,. Compute the radius of curvature and
the center of the circle of curvature for this curve portion (Figure
13.31). Note that the choice of P; during the first trial depends on the
radius of the curvature of the arc and has to be iterated several times for
accuracy (see the experimental results and performance evaluation at
the end of this section).

3. Set the new guiding point, P;, at P,, of the preceding trial, and set the
guiding point P, equal to 2P, — 1, where P;, P, and P;, P,, are the
guiding points for the previous and current runs, respectively.

4, Repeat the process by following the guiding point generating scheme
shown in Table 13.1 until P,, crosses the breakpoint for the first time.
When the error on the center coordinates is greater than a preset
threshold, it signifies that P,, has overshot the breakpoint (see Figure
13.31d). Once the breakpoint is overshot, P; is to be moved halfway
between the previous two P;’s, as shown in Figure 13.31e. The new P,
is 2P, — 1, as before. Once again the center and errors in the x and y
directions are computed. From this point onward, P, is moved forward
or backward until the breakpoint is reached, depending on whether P,
is within or beyond the breakpoint.
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(Q)

[T

Yo tx Y

b

FIGURE 13.31 Breakpoint detection process. (a) Construction to obtain (x,,, ..); (b, ¢)
when error in center coordinates computation is less than zero; (d) when error greater than

(0 + 0.5); (e) backtracking of P, and P,,; (f) P,, at breakpoint. (From Honnenahalli and
Bow, 1988.)

It has been found that after the breakpoint is overshot for the first time,
it typically takes less than five backward and forward movements to locate
the actual breakpoint. After the breakpoints have been located accurately, the
curve can be represented by concatenated curve segments, each of which can

be described by an arc. The representation of a curve can then be expressed
as

C: @lc(i) (13.14)
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FIGURE 13.32 Shapes of different radii used for the algorithm evaluation. (From
Hennenahalli and Bow, 1988.)

TABLE 13.1 Guiding-Point Generating

Scheme

Trial P, P, P,
3 P Ps P,
4

Column 1. All k = 1.
Column 2: P, = P,, of the previous trial.
Column 3: P, =2P, 1.

m

Sotirce: Honnenahalli and Bow (1988).
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where C stands for concatenation of all the circular arcs, and C(i) is the equation
for curve segment i and is given by

=2l +0i=ya) =R (13.15)

for all points between P, (x,,, v.) and Py(xy. va), where P (x,. y,) and
Py(xs. vs) are the breakpoints corresponding to segment i, while R, and
Pei(xei. yey) are, respectively, the radius and the center of the ith curve segment.
This algorithm has been applied to a wide variety of curves. Results show that
most curves (if not any) can be processed successfully with this algorithm and
can finally be represented satisfactorily by a sequence of concatenated arcs.

(a) b)

d) (=) ]

LY th) 1]

FIGURE 13.33 Results obtained by applying the algorithm to various curves. Curves
reconstructed from descriptions generated by this algorithm are superimposed on their
original graphics. Very close matchings were found in (a) to (¢) and (g). Some
discrepancies are noted in (f), (h), and (i). (From Bow et al., 1988,)
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Both curve graphics on paper-based documents and curve silhouettes from
three-dimensional objects were input to our system either through an AST
Turboscan scanner or a high-resolution CCD camera with a frame grabber. A
processing sequence foliowed to extract the curves from the graphics in discrete
form: that is, skeletonization of the curve graphics, linking of those data points
that have connectivity relationships, and so on. An ordered set of points was then
preduced for each curve. A breakpoint detection algorithm was then applied to
the ordered set of points so as to break the curve down into describable curve
segments. Each can be represented by only a few parameters.

Curves reconstructed from their machine-generated descriptions were
superimposed on the original graphics. Figure 13.33 shows some results. In
these figures the reconstructed curves were overlaid on the original curves for an
effectiveness evaluation of this approach. Very close matchings were found.

13.10 IDENTIFICATION OF PARTIALLY
OBSCURED OBJECTS

What we have discussed so far is how to describe a shape that is fully observable.
But in the real world, two or more overlapped objects are frequently encountered.
One example is that of two workpieces on a production line, with one partially
overlaid by the other. Partially occluded objects participating in a composite scene
are another example. How to identify these two objects from an occluded image
is a problem of finding the best fit between two boundary curves. This problem is
of central importance in applications of pattern recognition and computer vision.
Note that a contour usually represents one object. However, when occlusion
occurs, the contour could represent merged boundaries of several objects. Several
approaches are coded here to illustrate solutions to such types of problems.

Let us first make the problem simple. The approaches suggested below
focus on converting the object boundary (curve) into a form such as shape
signature strings, dominant points (landmarks), or sides of polygons that
approximate the curve. Then use the least-square-error fit to find the longest
matching (i.e., to find the subcurve that appears in the scene as well as in the
model object). The reason we follow such a procedure is simply because, in such
a situation, no use can be made of the global object characteristics, and therefore
stresses are put on the local properties of the curves.

In Wolfson’s (1990) shape signature string approach. a curve (the model
and scene curve) is first represented by characteristic strings of real numbers.
They are supposed to possess the invariant property in translation and rotation
within a local region:

c, i=1.2....n (13.16)
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Curvature is a good shape signature for use with a curve. Therefore, an
accumulated angle change 0(s;). i = 1.2, ..., n, versus path length along the
curve plot is first constructed. When the path length is sampled at an equal
interval, As, we then have

AO(s) = O(s; + As) — 6(s;))  i=1.2.....n (13.17)

With the conversion above, the effect of rotation and translation will be
eliminated. Similar numerical strings will represent similar subcurves. With
these two shape signature strings as input, find the long substrings (may be
several in number) that are common in both strings. If found, keep the starting
and ending points of these substrings for later analysis. Each pair of these long-
matching substrings corresponds to the subcurves in the cartesian coordinate
plane.

Then transform one of subcurves relative to the other in terms of rotation
and translation to give the best least-square-error fit of one curve to the other by
minimizing

> |Tu; — x| (13.18)
=1

where T represents the rotational and translational transformations operated on
one of the curves, which is usually the curve to be matched with the model. This
is to align these two curves along their matching subportions. Figure 13.34 shows
some results obtained with this method on the overlapping scene of pliers and
SCISSOrS.

Ansari and Delp (1990) tried to represent each object by a set of landmarks
that possess shape attributes. Examples of landmarks (sometimes called dominant
points) are corners, holes, protrusions, high curvature points, and so on. Their
approach works as follows. Given a scene consisting of partially occluded
objects, landmark matching (or dominant peint matching) is to be performed
between the two landmarks, one from the model object and the other from the
scene. These landmarks should be ordered in a sequence that corresponds to
consecutive points along the object boundary. Ansari and Delp use a local shape
measure called sphericity, which possesses the property that any invariant
function under a similarity transformation must be a function of the sphericity.
Figure 13.35 shows the landmarks obtained from the cardinal curvature points.
When using this approach to match landmarks in a model with those in a scene, it
1s required that at least three landmarks in a scene that correspond to those of the
model must be detectable. In addition, part of the sequential order of the
detectable landmarks must also be preserved. Ansari and Delp claimed that as
long as more than half of its landmarks in the scene can be detected in the correct
sequential order, the object in a scene can be recognized. Interested readers may
refer to Ansari and Delp (1990) for details of their approach.
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(b)

FIGURE 13.34 Model objects and their boundary curves. (From Wolfson, 1990.)

1311 RECOGNIZING PARTIALLY OCCLUDED
PARTS BY THE CONCEPT OF SALIENCY OF
A BOUNDARY SEGMENT

The problem of recognizing an object from a partially occluded boundary image
is of considerable interest in industrial automation. When objects are occluded,
many shape recognition methods that use global information will fail. In this
section we describe a method that combines the ideas we have discussed in
Chapters 3 and 4 with digital image processing. First, the image is processed and
thinned. Then useful features along the boundary are extracted and the effec-
tiveness of the features evaluated. Weighting coefficients are applied to the
individual features. Finally, a discriminant function is computed to determine the
category to which the object belongs.



(d)
(e)

FIGURE 13.35 Landmarks of a library of objects obtained from the cardinal curvature points. (a) Wire stripper; (b) wrench; (c)
specialty plier; (d) needle-nose plier; (e) wire cutter. (From Ansari and Delp, 1990.)
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As we discussed in previous chapters, the boundary of an object carries a
lot of information about its shape. So the traditional method focuses on this
information, and a match is to be made between the boundary of the image and
the boundary of the model. The computation required by this method is, no
doubt, excessive. If the objects are intermixed or partially occluded, the afore-
mentioned match will no longer be realized.

In the approach we are discussing here, the concept of saliency of a
boundary segment is introduced. Instead of finding a best match of a template to
the boundary as a whole, the matching is done on the subtemplates (i.e., the
salient features of the boundary), which can distinguish the object to which it
belongs from other objects that might be present. To make the method more
effective, choice of the salient features is important. Their choice depends greatly
on the set of objects being considered. When the visible part of the object
matches some set of subtemplates with enough combined saliency, the partially
occluded object can then be determined. In the extraction of the subtemplates, the
boundary image is first transformed from its x—y coordinate system to a O-s
coordinate representation, with @ (the angle of slope of the boundary image
segments) plotted against s (the arc length along the boundary). A matching
process is conducted on the 0-s representation of subtemplates and boundary
image segments of the object.

Take an example to illustrate the matching process. Figure 13.36 shows a
boundary image containing a partially occluded part between b, and b, with its
s representation traced counterclockwise along the boundary. A heavy line in
the complete template shown in Figure 13.37 shows the subtemplate chosen as
the feature for matching, which is not occluded. The matching can be thought of
as a minimization problem with 0_(s), the 6—s graph of subtemplate 7,, moving
along the s axis direction in the (-s graph of the boundary image ty(s) at
regularly spaced pixels, that is, minimizing

h
T = Z[GBJ'(S,U) - ()Ti(sp) + 05,‘]2 (13.19)

p=1

where # is the number of pixels in the subtemplate r, and in the particular
boundary interval B;. 0; in (13.19) is a variable added to make 3; to be a
minimum. It can easily be shown that it is the difference between the average
slope of the boundary segment and that of the subtemplate, that is, 6, — 0., as
shown in Figure 13.38. The shift in § corresponds to an angular rotation of the
subtemplate to the average orientation of the boundary image segment. Define a
matching coefficient

\
e 0<C. <1 13.20
C!I 1+}.?; — Ty = ( )
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FIGURE 13.36 Boundary image and its (s representation. (From Turney et al., 1985.)

where 7}, is the minimum value of y;;. A Cj; value close to | implies a good match;
otherwise, a poor match. Select the weighting coefficient w; properly with each
Cj; to match the template 7. If the combined saliency of some set of subtemplates
is over a certain value (which is prespecified), the partially occluded object is said
to be identified.

Figure 13.39 is taken from part of a figure in Turney et al. (1985) to show
the computer result in recognizing the two keys when one occludes the other. This
approach is useful in industrial inspection, where the types of parts are almost
always known a priori.
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FIGURE 13.37 Template and its O—s representation. (From Turney et al., 1985))
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FIGURE 13.38 Matching in 0—s space. (From Turney et al., 1985.)
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FIGURE 13.39 Three keys experiment. (From Turney et al., 1985.)

(€]

()

PROBLEMS

13.1 For an image of 512 x 512 pixels, determine the total number of
levels and the total number of nodes needed for the entire quadtree
representation of the image.

13.2 Following the method suggested in Sec. 13.2, delineate the medial

axis from the disjoint boundary segments of the two figures shown
in Figure P13.2.
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FIGURE P13.2

Find the medial axis of (a) a circle; (b) a square; (c) an equilateral
triangle; (d) a submedian chromosome; and (e) a telocentric chro-
mosome.

A chain code representation of a boundary can be obtained with the
following algorithm:

1. Start at any boundary pixel point.
2. Find the nearest edge pixel and code its orientation.
3. Continue until there are no more boundary pixel points.

Write a program for its implementation and run the program for the
contour shape shown in Figure P13.4.

FIGURE P134

Following the algorithms suggested in Sec. 13.9, write a program to
determine all the breakpoints and represent the closed curve shown
in Figure P13.5 with concatenated arcs.

FIGURE P13.5
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Transforms and Image Processing in
theTransform Domain

The necessity of performing pattern recognition problems by computer lies on the
large set of data to be dealt with. The preprocessing of large volumes of these data
into a better form will be very helpful for more accurate pattern recognition. A
two-dimensional image is a very good example of problems with a large data set.
The preprocessing of an image can be carried out in one of two domains: the
spatial domain and the transform domain. Figure 14.1 shows the general
configuration of digital image processing in the spatial domain or in the Fourier
domain and the relationship between them.

When an image is processed in the spatial domain, the processing of
digitized image is carried out directly either by point processing or by neighbor-
hood processing for enhancement or restoration. But if an image is to be
processed in the transform domain, the digitized image will first be transformed
by discrete Fourier transform (DFT) or fast Fourier transform (FFT). Processing
will then be carried out on the image in the transform domain. After the image is
processed, an inverse operation of the FFT [called the inverse fast Fourier
transform (IFFT)] will be carried out on the result to transform it back to an
image in the spatial domain.

Image transform and image inverse transform are two intermediate
processes. They are linked such that image processing can be carried out in
the transform domain instead of in the spatial domain. In so doing, three
objectives are expected:

401
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20V

p1 1e1dey)



Transforms and Image Processing in theTransform Domain 403

Ax)
flxo+(N-2)Ax)
I~ flxo+ (V- 1Ar)
' Slxo+Ax)
f(-\())r—\f(_m_,_ 2Ax)
/ \ Six0:3A%)
X0 X A2 X3 AN-2 AN-] =

FIGURE 14.2 Discretization of a continuous function.

1. Processing might be facilitated in the transform domain for some
operations, such as convolution and correlation.

2. Some features might be more obvious and easier to extract in that
domain.

3. Data compression might be possible, thus reducing the on-line and off-
line storage requirements and also the bandwidths requirements in
transmission.

141 FORMULATION OF THE IMAGE TRANSFORM

If a continuous function f(x) as shown in Figure 14.2 is discretized into N

samples Ax apart, such as f(x,), f(xg + Ax), f(xg + 2Ax), ..., f(xg + (N — 1)Ax),
the function f(x) can be expressed as

S(x) = f(xy + xAx) x=0,1,..., N—1 (14.1)

With this in mind we have the discrete Fourier transform pair*

] Nl .
F) =2 3 fe?™N  u=01,... N~1 (14.2)
x=0
N-1 .
f&x) =Y Fluye>™/V x=0,1,... N—1 (14.3)
u=0

*A proof of these results is very lengthy and is beyond the scope of this book. Details of the derivation
can be found in Brigham (1974).
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where N is the number of samples taken from the function curve. This
corresponds to the transform pair for a continuous one-dimensional function:

F(jw) = J eI de (14.4)
] > (214 ;
f=5- Jm e/ F( jw) do (14.5)

Extending this to two-dimensional functions, we have the Fourier transform pair
for a continuous function as

o
Flu,v) = “f (x, p)e 7T gy dy (14.6)
-0
and
o
fOx.y) = JJF(u, v)e 2 gy du (14.7)
— 0

where x and y are spatial coordinates and f(x, y) is the image model; while u and v
are the spatial frequencies and F(w, v) is the frequency spectrum. The corre-
sponding discrete transform pair for the two-dimensional function will be

] N=IN-1 . .
Flu,v) = ]_V_Z Z Z f(x,}’)e_Jzn(uxﬂy)/N

x=0 y=0

=012  N=1 (14.8)

and

N—-1N-1

f(x,,V) = Z Z F(u, v)ej2n(tm+ry)/N

u=0 v=0

x,y=0,12,..., N1 (14.9)

The frequency spectrum F(u. v) can be computed if the appropriate values of x, y,
u, v, and f(x, y} are substituted into Eq. (14.8). Clearly, the computation 1s rather
cumbersome, and spectrum computation by computer is suggested when N
becomes large.

There are quite a few transformation techniques available, among them
the Fourier transform represented by Eq. (14.8). If the exponential factor
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e /2Mwtt)/N s replaced by a more general function, g(x,y; u,v), Eq. (14.8)
becomes
N-1N—I

Fu,v) =3 3 flx,y)glx, vy u,v) (14.10)

x=0 y=0

where F(u, v)is an N x N transformed image array if f(x, y) is an N x N array of
numbers used to represent the discrete image model as follows:

f(0,0) £(0. 1) f(ON - 1)
1,0 (LN —1
/1= 4 :) 4 : : (14.11)
FNZ1L0) FIN=1,1) .. FN—=1LN=1)

The function g(x.y;u,v) in Eq. (14.10) is the forward transform kernel.
Correspondingly, we can write its inverse transform:
N-1N-]

fpy= 3 3 F(u, v)h(x,y; u, v) (14.12)
u=0 r=0
where h(x, y; u, v) is the inverse transform kernel. For the case of Fourier
transform, the inverse transform kernel is e/2*“+%) Equations (14.10) and
(14.12) form a transform pair. The transformation is unitary* if the following
orthonormality conditions are met:

X Y v: e 0)g* (. yoi 4. 0) = 0(x = Xg, ¥ = 30) (14.13)
%Z }; h(x, y; u, 0)R*(Xg. ¥oi 1, ©) = 3(x ~ X, ¥ — ¥p) (14.14)
)3 };g(x.y: . V)g*(x. ; U, bg) = Ou — g, v — 1y) (14.15)
> Z h(x, v; u, V)A*(x, v 1y, vg) = O — up, v — vy) (14.16)

where the superscript.* denotes a complex conjugate and the Dirac delta function
is

. foo atx = xg, ¥V =g
0= [ 0 elsewhere (14.17)
or
) atw = uy, v =
0= [ 0 elsewhere (14.18)

*4 15 said to be a unitary matrix if the matrix inverse 1s given by 4*/. A real unitary matnx s called an
orthogonal matrix. For such a matrix, 4~ = 47,
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These can easily be proved by substituting e /2™w+w/N gnd gt/2m0xo+eol/N
respectively, for g(x, y; u, v) and g*(x,, y; 4, v) in Eq. (14.13).

Two-dimensional transformation is a very tedious mathematical operation,
and therefore lots of effort has been spent in simplifying it. The separability
property of the transformation is very effective for this purpose. The transforma-
tion is “separable” if its kernel can be written as

glx, ¥y u, v) = g (x, g ow, V) forward transform (14.19)
h(x,y; u, v) = hg(x, w)h, (v, v) inverse transform (14.20)

A separable unitary transform can thus be computed in two steps:

1. Transform column-wise or one-dimensional transform along each
column of the image f(x, ¥):

N-1
Plu,y) = ;)f(x-y)gcol(x, ) (14.21)

where g..;(x, u) is the forward column transform kerne! and is e™/2=/¥
for the Fourier transform.

2. Transform row-wise, or one-dimensional unitary transform along each
row of P(u. y):

N—1
F(u,v) = Z}) P(u, v)gow, v) (14.22)
y=

where g, (¥, v) is the forward row transform kernel and is e 72™>/¥ for
the Fourier transform, Thus a two-dimensional transform may be
computed in two steps, each being a one-dimensional transform. If
an efficient and effective one-dimensional transform algonthm is set
up, it can be used repeatedly for a two-dimensional transformation.

14.2 FUNCTIONAL PROPERTIES OF THE
TWO-DIMENSIONAL FOURIER TRANSFORM

As mentioned in Section 14.1, the Fourier transform for a continuous function is

e e}

F{u,v) = J J Flx, )e 2T gy gy (14.23)

—-00
This transform function is in general complex and consists of two parts, such as

F(u, v) = Real(u, v) +j Imag(u, v) (14.24)
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or in polar form,

F(u, v) = |Flu, v)|¢(u, v) (14.25)

where F(u, v) = [Real’(u, v) + Imag®(u, v)]'/* = Fourier transform of f(x. y),

Imag(u, v)
—————— | = ph |
Real(u, :'}] e
and |F(u, v)|* = E(u, v) = energy spectrum of f(x, y).
The inverse transform of F(u, v) gives f(x, y). The inverse transform forms
a pair with Eq. (14.23).

P(u, v) = tan"[

0

fx,p) = F ' [Fu,v)) = JJF[H. v)e 2+ gy dy (14.26)

=00

This transform pair can be shown to exist if f(x, ¥) is continuous and integrable
and F(u, v) is also integrable. If we have a simple rectangular bar object with
uniform intensity, that is, f(x, y) = f,, shown shaded on Figure 14.3, its Fourier
spectrum can then be computed accordingly to Eq. (14.23) as follows:

a0
Flu, v) = JJf‘{_t.}.)‘_,—J'lrrluu-r\I dx d.,‘.

—00

17 Yo
- ! -[ e_}-:ﬂudx j ,—;".!rrn' d'lr'
e 0 0 i . (14.27)

(e — @/THLy Je JRUX, (e—;m'u[. —L ]t'_””'“
—j2nu —j2nv
SIN MUKy jmce, SN ALY

e ™

= foXo)o

X, oy,

(a) (h)

FIGURE 14.3 Fourier spectrum of a simple rectangular bar object with uniform
intensity: (a) object; (b) spectrum.
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(a) (b)

FIGURE 14.4 Computer printout of the Fourier spectrum of a simple vertical rectangular
bar object with uniform intensity. (a) object; (b) spectrum.

or

= MY,

F(u, v) = fy x5, sinc(muxy Je ™ sinc{ oy, Je ™™ (14.28)
if sinc(mux,) and sinc(mvy,) substitute, respectively, for (sinmux,)/mux, and
(sin vy, )/moyy. Figure 14.3b shows the plot of the intensity of the spectrum
F(u, v), from which we can see clearly that the spectrum in the intensity plot
varies as a sinc function.

Some additional examples of two-dimensional functions and their spectra
are shown in Figures 14.4 to 14.7. The same number of pixels in the x and y

(c)

FIGURE 14.5 Computer printout of the Founier spectrum of a simpie regular pattern
object. (a) Object; (b) its spectrum; and (c) center portion of the spectrum enlarged.
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(a) (b)

(c)

FIGURE 14.6 Computer printout of the Fourer spectrum of a simple image with
gaussian distributed intensity. (a) Image; (b) its Fourier spectrum; and (c) center portion
of the spectrum cnlarged.

directions of the images and their spectra are the same, but due to the
imperfection of the monitor (i.e., not exactly the same unit length of a pixel in
the x and y directions), the resulting images and spectra are flattened, as shown
in Figures 14.4 10 14.7. The same applies to the later images.

Following are some properties of the Fourier transform that are worthy of
discussion.

14.2.1 Kernel Separability

The Fourier transform given in Eq. (14.23) can be expressed in separate form as
follows:

o e i
F(u,v) = I [[ £(x, y)e™ o= fh‘}*""”” dy (14.29)

=g
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(a)
(b)

(c)

FIGURE 14.7 Computer printout of the Fourier spectrum of a simple object with

uniform intensity. (a) Object; (b) its Fourier spectrum; and (c) center portion of the
spectrum enlarged.

The integral in brackets is F(w,y) (row-wise transform). F(u, v) can then be
expressed as

F(u,v) = I F, (u, v)e 2™ dy (14.30)
—ag s
or
Flu,v) = r F (x, v)e 2™ dx (14.31)
=0
where

o0
F(x,v) = J £(x, y)e ™ dy (column-wise transform)

=00



Transforms and Image Processing in theTransform Domain 411

The principal significance of the kernel separability is that a two-dimensional
Fourier transform can be separated into two computational steps, each a one-
dimensional Fourier transform—which is much less complicated then the two-
dimensional transform. Thus

F (. v) = FAF &) (14.32)
or
F(u.v) = FAFL D)) (14.33)

where #, and #, represent, respectively, the column-wise and row-wise trans-
formations.

This is also true for the inverse Fourier transform. Since the same one-
dimensional Fourier transform is employed in these two steps, more effort can be
concentrated on the design of the algorithm to make it more effective.

14.2.2 Linearity

The Fourier transform is a linear operator and possesses distributivity and scaling
properties. Thus

Flaifie, ) + ay f1(x, V)] = a, F[(Ai(x, )] + @ F [ folx, p)]
= aF(u, v) + a,Fy(u, v) (14.34)

. 1 u v
Ff(ax, by)] = @F(;,E) (14.35)

Equation (14.35) can be easily proved by direct substitution in Eq. (14.23) of ax,
by, u/a, and v/y, respectively, for x, y, u, and v.

14.2.3 Periodicity and Conjugate Symmetry

It can be easily proved by substituting # + N for u or v + N for v in Eq. (14.23)
that the Fourier transform and the inverse Fourier transform are periodic and have
a period of N. Thus we have

Fu,v) = Fu+N,v) = Fu,v + N) = F(u + N, v+ N) (14.36)
and
S =fx+N. ) =fx.y+N)=f(x+N.y+N) (14.37)

By the similar method, the conjugate symmetric property of the Fourier transform
that can also be proved such that

F(u.v) = F*(—u, —v)
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By the same token, the magnitude plot of the Fourier transform is symmetrical to
the origin; or

|FCu. v)] = |1F(—u, —v)| (14.38)

14.24 Rotation Invariant

If polar coordinates {p, 8) and (r, ¢) are introduced for the rectangular coordi-
nate, the image function and its transform become f(p, #) and F(r. ¢), respec-
tively. It can easily be shown by direct substitution into the Fourier transform pair
that

Fif(p. 0+ A8} = F(r, ¢ + Ad) (14.39)

where A¢ = AQ. That is, when the image function f(x, y) is rotated by A#, its
Fourier transform is also rotated by the same angle A@ (i.e., A¢ = Af). In other
words, the same angle rotations occur in the spatial and the transform domains.
See Figures 14.8 and 14.9 for illustrations.

One more thing we would like to add about the Fourier transform is that
most of the information about the image object in the spatial domain concentrates
on the central part of the spectrum. The intensity plot of the spectrum contains no
positional information about the object, since the phase angle information is
discarded in that plot. Complete reconstruction of the original image can be
obtained when the real and imaginary spectrum data are included. Figures 14.10a
and 14.11a show two identical objects placed in different spatial positions. They
give exactly the same spectra as those shown in Figures 14.10b and 14.11b.
Figures 14.10c and 14.11c are their zoomed spectra, shown for comparison.
Concentration of the spatial image information content in the Fourier spectrum is
discussed in Section 14.4.3.

14.25 Translation

The Fourier spectra shown in Figure 14.12b for the images shown in part (a) of
the figure concentrate on the four corners. This introduces difficulties in obtaining
an overall view of the spectra. Figure 14.12¢ shows the same spectra after the
origin of the transformation plane has been translated to the point (i, vy), which
is (N/2,N/2).

Let F (i, v) be the Fourier transform of f(x. y). If we multiply /(x. y) by an
exponential factor, expj2n(ugx + vyy)/N], and then take the transform of the
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(a) (b)

() (d)

FIGURE 14.8 Rotation invariant property of the Fourier transform. (a) Simple image;
(b) its spectrum; (¢) same image as in (a), but rotated by an angle; (d) corresponding
spectrum of the rotated image shown in (c).

product, the origin of the frequency plane will be shified to the point (1, vy).
Thus

f(x,y) & F(u,v) (14.40)
[/2n(ugx + voy)]

N

i the spateal domain

Slx.y)exp & Fu —ug, v—1y) (14.41)

n the frequency doman

From (14.41) it is noted that F(u — uy, v — vy) is exactly the same in shape as
F(u, v), but shifted by a distance of (1, vy).
The same applies to the inverse transformation operation. If we multiply
F(u, v) by an exponential factor exp|—j2n(ux, + vy)/N] and take the inverse
transform of their product, we obtain f(x — xq, ¥ — ¥,). Thus
—j2n(uxy + vyy)

flx=xp,¥ = ¥o) & Flu, r}cxp[— v ] (14.42)
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(b)

(c) (d)

FIGURE 14.9 Rotation invariant property of the Fourier transform. (a) simple image;
(b) its spectrum; (c) same image as in (a), but rotated by an angle; (d) comesponding
spectrum of the rotated image shown in (c).

That is, the entire spatial image is translated to the new position. This is done by
moving the origin of the spatial image to the point (x;, v,). Equations (14.41) and
(14.42) form a translational transform pair.

To make the spectrum easier to read and analyze, we usually move the
center of the frequency plane to (u,, vy) = (N/2,N/2) instead of (uy, vy) =
(0, 0). By so doing, the exponential multiplication factor is

2 + VoY
exp[j niu,,:; vpy)

] = expljn(x + )]
= (=1)"" (14.43)

We then have the centering property of the transformation,

: N N
[, (=1 & F(u —5 V- ;;) (14.44)

The double arrows in Egs. (14.40) to (14.44) indicate the correspondences
between the image functions and their Fourier transformations, and vice versa,
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(a) (b)

(c)

FIGURE 14.10 Computer printout of the Founer spectrum of a simple object. (a) Object;
(b) its Fourier spectrum; and (c) center portion of the spectrum enlarged.

Figures 14.12 and 14.13 give, respectively, several other images and some regular
patterns and their corresponding Fourier transforms: part (a) in the figures shows
the images in the spatial domain; (b) their Fourier spectra without translation; and
(c) their Fourier spectra after shifting to the center of the frequency planes.

It should be pointed out that there is no change in the magnitude of the
spectrum even with a shift in f(x, v), since

J2n(ugx + vyy)

f(x, y)exp |:-— N

:H = |f e ¥

and

—j2r(uxy + vyg)
N

|Fm. t']exp[ ]I = |Flu, v)|

and therefore there is no change in the spectrum display except for a translation.
This is because the spectrum display is usually limited regarding the display of its
magnitude.
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(@) (b)

(c)

FIGURE 4.11 Computer printout of the Fourier spectrum of the same object as shown in
Figure 14.10, but placed at a different position. (a) object: (b) its Fourier spectrum; and
(c) center portion of the spectrum enlarged.

14.26 Correlation and Convolution

In the processing of images by the Fourier transform technique, correlation and
convolution are the important operations. Emphasis on the clanification of the
difference between them will be the main subject of this section. Definitions
given hereafter are valid only for deterministic functions. Correlation of two
continuous functions f(x) and g(x) is defined by

o0

f(x)oglx) = J Sla)g(x + o) du (14.45)
—00
where 2 is a dummy variable of integration. The correlation is called auto-
correlation if f(x) = g(x), and cross-correlation if f(x) # g(x). Convolution, by
definition is
0

J(x) * g(x) = J S(a)g(x — a) da (14.46)

(= &
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FIGURE 14.12 Original Fourier spectra and those after the origin is translated to (N /2,
N/2). (a) Original image; (b) Fourier spectrum of the image as shown in (a); (¢) same
Fourier spectrum after the ongmn is translated to the pomnt (N /2, N/2).

(a) _'
(b)

(c)

FIGURE 14.13 Onginal Fourier spectra and those after the origin is translated to (N /2,
N/2). (a) Original image; (b) Fourier spectrum of the image as shown in (a); (c) same
Fourier spectrum after the origin 1s translated to the point (N /2, N/2).
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The forms for correlation and convolution are similar, the only difference
between them being the following. In convolution, g(x) is first folded about the
vertical axis and then displaced by x to obtain a function g(x — «). This function
is then multiplied by f(x) and integrated from —oo to oo for each value for
displacement x to obtain the convolution. (See Figure 14.14, which is self-
explanatory.) In correlation, g(x) is not folded about the vertical axis and is
directly displaced by x to obtain g{x + a). Figure 14.14e indicates the integral
[ f(a)g{x + a) do on the shaded areas shown in part (c), which is the correlation
of f(x) and g(x); part (f) indicates the integral {f{a)g(x — =) dor over the shaded
area in part (d), which is the convolution of f(x) and g(x).

J o R4 ((1){

to]—

{a) (b)

4

flavg (v + o) Floug (v - o)

1 i

o (. - ()

(<) (d)

fFloeg(x)

-1 0 +1 0 1
(¢) ()

T2

FIGURE 14.14  Graphical illustration of the difference between correlation and convolu-
tion.
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By the same definition, the correlation for a two-dimensional case can then
be expressed as

o0

S0 y) 0 gle,y) = J Jf(a, gl + o,y + ) da dp (14.47)

- 00

After discretization, the correlation between f(x, y) and g(x, y) becomes

N—IN-1
[, y)oglxy)= 3 3 flm ngx+my+n)

m=0 n=0

forx=0,1,... N—1L,y=0,1,...,. N-1 (14.48)

If the Fourier transform of f(x, y) is F(u, v) and that of g(x, ) is G(u, v),
the Fourer transform of the correlation of two functions f(x, ¥) and g(x, y) is the
product of their Fourier transforms with one of them conjugated. Thus

fx,y)oglx, y) & F(u, v)G*(u, v) (14.49)

which indicates that the inverse transform of F(u, v)G*(u, v) gives the correlation
of the two functions in the (x, y) domain. An analogous result is that the Fourier
transform of the product of two functions f(x, y) and g(x, y) with one of them
conjugated is the correlation of their Fourier transforms, and is formally stated as

Sx,y)g*(x. y) & F(u,v) o G(u, v) (14.50)

where * represents the complex conjugate. These two results together constitute
the correlation theorem. Similarly, we can derive the convolution theorem as
follows:

fx,y) x glx, y) & F(u, v)G(u, v) (14.51)

and

fx,v)gx, ) & F(u, v) * G(u, v) (14.52)

This states that the Fourier transform of the convolution of two functions is equal
to the product of the Fourier transforms of the two functions; and conversely, the
Fourier transform of a product of two functions is equal to the convolution of the
Fourier transforms of the two functions. These two relations constitute the
convolution theorem. This theorem is very useful in that complicated integration
in the spatial domain can be completed by comparatively simpler multiplication
in the Fourier domain.

One of the principal applications of correlation in image processing is in
the area of template matching. The correlations of the unknown with those
images of known origin are computed and the largest correlation indicates the
closest match. This is sometimes called the method of maximum likelihood.
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143 SAMPLING

In digital image processing by Fourier transformation, an image function is first
sampled into uniformly spaced discrete values in the spatial domain and is then
Fourier transformed. After the processing is completed in the Fourier domain, the
results are converted back to the spatial image by inverse transformation. What
interests us most is the relations between the sampling conditions and the
recovered image from the set of sampled values. Let us start with one-dimen-
sional case.

14.3.1 One-Dimensional Functions

If we have a function f(x) which is the envelope of a string of impulses on Figure
14.15a, we have a corresponding transform F'(u), as shown in Figure 14.15b. The
string of impulses shown in part (a) is actually a sampled version of f(x) with
train of impulses Ax apart or

S(x) i O(x — k Ax) = § Sk Ax)o(x — k Ax) (14.53)
k=—00

k=—00

F(u) convoluted at interval I/Ax is shown in part (b). This is because the Fourier
transform of a string of impulses will be another string of impulses a distance
1/Ax apart, where Ax is the distance between impulses of the original string.

Similarly, if we sample F(u) with an impulse train S(#) Au units apart
between impulses, we will have f(x) > d(x — k Ax) convoluted at interval 1/Au
and periodic with period 1/Au in the spatial domain. If N samples of f(x) and
F(u) are taken, and the spacings of Au are selected such that the interval 1/Au
just covers N samples in the x domain and interval 1/Ax just covers N samples in
the frequency domain, then

1o NA (14.54)
Au

or
Au— L L (14.55)
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fw FQn
N
“I“““lm. - /\/\’ -
0 b L/Au ' 0 /A
Ax
(a) (b
1 4
s S
| i - u
0 1/Au o
(c) (d)
s(x)=f(x) Sy F ()
N N

llm“llm.m “I [T ';‘_ il hhui]ﬂll lhiu...ni .

0 /Al ’ 0 I/Ax

u

(e) (f)

FIGURE 14.15 Sampling on a one-dimensional function.

14.3.2 Two-Dimensional Functions

For the two-dimensional case, the image function is f{x, y). The Fourier transform
pair is
1 M=1N-i .
F(ll. U) - z Z f(X, y)e—jZK(th/M+i‘y/N)
MN x=0 y=0

u=0,1,... M-—1;0=0,1,...,N—1 (14.56)



422 Chapter 14

and
M—1N-1
f(x, y) — Z Z F(u, U)ejZR(tu/M+vy/N)
u=0 v=0
x=01,.... M-1y=0,1,...,N-1 (14.57)

Let Ax and Ay be the separations of strings in the spatial domains, and Aux and Av
be those in the frequency domains;

1
Au=—-
“T M Ax
(14.58)
Ap=
N Ay

can be worked out for this two-dimensional DFT by the analogous analysis
developed for this one-dimensional case. With these relationships, the image
function and its two-dimensional Fourier transform will be periodic with M x N

uniformly spaced values. For N x N square array samples, that is, M = N, we
have

Au = ﬁ
(14.59)

Av = —1—

N Ay

These relationships between the sample separations guarantee that the two-
dimensional period defined by 1/Au x 1/Av just be covered by N x N uniformly
spaced samples in the spatial domain, and the period defined by 1/Ax x 1/Ay
will be covered by N x N samples in the frequency domain. It is noted that the
constant multiplicative terms may be grouped arbitrarily. If they are regrouped
this way such that NF(u, v) = F(u, v), the Fourier transform pair will have the
following form:
] N=IN-I

Z Zf(x’ y)e—jZn(ux+vy)/N

Flu,v) = ~ .
x=0 y=0

u,v=01...,N-1 (14.60)
] N=IN-1

fEey) =75 3 Flu, v)e/r etmin

Nu:O v=0
x,y=01,....N=1 (14.61)

The notions of impulse sheets and two-dimensional impulses suggested by
Lendaris et al. (1970) will be introduced for the discussion of two-dimensional
functions. An impulse sheet is defined such that it has an infinitive length in one
direction and its cross section has the usual delta-function properties. The cross
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section of the impulse sheet is presumed to remain the same along the sheet’s
entire length. The intersection of two impulse sheets results in a two-dimensional
impulse located at their intersection.

The impulse sheets and two-dimensional impulses have the following
properties:

1. The two-dimensional transform of an impulse sheet is an impulse sheet
centered at the origin and in the direction orthogonal to the direction of
the original impulse sheet.

2. The two-dimensional Fourier transform of an infinitive array of
uniformly spaced parallel impulse sheets is an infinite string of
impulses along the direction orthogonal to the impulse sheet direction,
with a spacing inversely proportional to the impulse sheet separation,
and with one of the impulses located at the origin.

3. Conversely, the two-dimensional Fourier transform of a string of
uniformly spaced impulses is an array of parallel impulse sheets
whose direction is orthogonal to the impulse string, whose separation
is inversely proportional to the impulse separation, and one of whose
impulse sheets goes through the origin.

4. The two-dimensional Fourier transform of an infinite lattice-like array
of impulses is an infinite lattice-like array of impulses whose dimen-
sions are inversely related to those of the original lattice, with an
impulse at the origin.

5. When convolving a function with an array of impulses, the function is
simply replicated at the locations of each of the impulses.

6. The convolution theorem as dertved for one-dimensional functions also
holds for two-dimensional functions.

Relatively Large Aperture

If the image consists of an array of uniformly spaced parallel straight lines with a
scan circular aperture, the Fourier transform of the combination will be the
convolution of their respective Fourier transforms. Thus

% [(a straight line * a string of impulses)(circular aperture function))
=ZF()*xF()

where the first #(.) is the Fourier transform of the first set of parentheses, while
the second #(.) is the Fourier transform of the second set of parentheses. The
result will be a string of impulses with a separation equal to the reciprocal of
the spacing of the lines and in a direction perpendicular to these parallel lines. If
the aperture is relatively large with respect to the spacing of the parallel lines, the
separation of the string of impulses will be large, as shown in Figure 14.16b. The
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(a) (b)

FIGURE 14.16 Fourier transform of a uniformly spaced parallel straight lines with a

scan circular aperture. (a) Uniformly spaced parallel straight lines; (b) Fourier transform of
(a),

Airy disk is the Fourier transform of the circular aperture, and is replicated on
each impulse. A computer plot is shown in Figure 14.17. Some additional
examples are shown in Figures 14.18 to 14.25,

Figure 14.26 shows another example, which consists of an array of
rectangles with a relatively smaller rectangular aperture. The Fourier transform
of this image will be the Fourier transform of the combination

[(A rectangle * array of impulses))(rectangular aperture function)

!

(a) (b)

FIGURE 14.17 Computer printout of the Founer transform of uniformly spaced parallel
straight lines with a scan circular aperture. (a) uniformly spaced parallel straight lines; (b)
Fourier transform of (a).
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(c)

FIGURE 14.18 Arrays of squares with a relatively large square aperture. (a) array of
squares; (b) spectrum; (c) center portion of the spectrum enlarged.

The result of Fourier transform of this array of rectangles (i.e., those inside the
brackets) will be the product of Fourier transform of the rectangle shown in
Figure 14.26b and the Fourier transform of the array of impulses. The Fourier
transform of the array of impulses is another array of impulses. Multiplication of
the Fourier transform of the rectangle with an array of impulses gives a
“sampling” Fourier transform of the rectangle (Figure 14.26¢).

By the convolution theorem, the product of the rectangular aperture
function and the array of rectangles in the spatial domain will give a convolution
of their respective spectra. Therefore, the Fourier transform of the rectangular
aperture will be replicated at each sampling point of the Fourier transform in
Figure 14.26¢.

Relatively Small Aperture

Let us take the example shown in Figure 14.27. This array of six squares can be
viewed as the result of convolving one square with an infinite array of impulses,
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(€)

FIGURE 14.19 Arrays of hexagons with a relatively large square aperture, (a) Array of
hexagons; (b) its spectrum; (c) center portion of the spectrum enlarged.

- g -
]
: R
(b)

(a)

FIGURE 14.20 Fourier spectrum of a pattern with a relatively large square aperture.
(a) Simple pattern; (b) its spectrum.
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(a) (b)

(c)

FIGURE 14.21 Fourier spectrum of a pattern with a relatively large square aperture,
(a) Simple regular pattern; (b) its spectrum; (¢) center portion of the spectrum enlarged.

(a) (b)

FIGURE 14.22 Fourier spectrum of a pattern with a relatively large square aperture.
(a) Simple regular pattern; (b) its spectrum.
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FIGURE 14.23 Fourier spectrum of a pattern with a relatively large square aperture.
(a) Simple regular pattern; (b) its spectrum.

(a) (b)

(c)

FIGURE 14.24 Fourier spectrum of a pattern with a relatively large square aperture,
(a) Pattern, (b) its spectrum; (c) center portion of the spectrum enlarged.
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(b)

(c)

FIGURE 14.25 Fourier spectrum of a pattern with a relatively large square aperture.
(a) Complicated pattern; (b) its spectrum; (c) center portion of the spectrum enlarged.

with the result multiplied by an aperture to allow only the six squares to appear;
that is,

[(A square = infinite array of impulses)](rectangular aperture)

According to the mathematical operation above, its corresponding Fourier trans-
form will then be

[(FT of the square)(FT of the impulse array)] * (FT of rectangular aperture)

Since the impulse spacing in the spatial domain is relatively large with
respect to the aperture, the Fourier transform of this array of impulses (which
turns out to be another array of impulses) will have relatively narrow spacing,
thus giving a sampled version of the Fourier transform of the square. Convolution
of this multiplication with the Fourier transform of the rectangular aperture will
have the Fourier transform of the aperture replicated at each sample point.
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(c)

FIGURE 14.26 Arrays of squares with a relatively small aperture. (a) Array of squares;
(b) its spectrum; (c) center portion of the spectrum enlarged.

In extracting primitives of Chinese characters by the Fourier transform
technique, a similar problem appears. Figure 14.28a shows a primitive consisting
of two parallel bars in a vertical direction and three bars in a horizontal direction.
Figure 14.28b shows its spectrum, and Figure 14.28c shows the central portion of
the Fourier transform of part (a). Another primitive, different from that shown in
Figure 14.28a by having one more bar in the vertical direction, is shown in Figure
14.29a. Because of the differences in the number of bars in the vertical direction,
a difference in the Fourier transform can also be noted.

Figure 14.30a shows a parking lot. For the same reason as before, this can
be viewed as a small rectangle convoluted with an infinite string of uniformly
spaced impulses multiplied by the scan aperture so as to cause only a small
number of rectangles to appear. Figure 14.30b and c show, respectively, its
spectrum and the central portion of the spectrum. More spectra for their
corresponding images are shown in Figures 14.31 to 14.34.
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(a) (b)

(c)

FIGURE 14.27 Arrays of squares with a relatively small aperture. (a) Array of squares;
(b) its spectrum; (c) center portion of the spectrum enlarged.

14.3.3 Applications

Sampling is a good tool to use to reduce the amount of information to be
processed. The Fourier transform is particularly well suited to sampling because
of the following features:

1. Most of the information from the original imagery will be on the

central portion of the spectrum. From the translation property of the
Fourier transform,

f(l — Xg, ¥ = Vo) € F(u, v)e Fam{nxy 4oy )/ N (14.62)

It is interesting to note that a shift in f(x,y) does not affect the
magnitude of its transform. A linear object in the original imagery
gives rise to a spectrum along a line centered on the central axis.
Similarly, a circular object gives rise to a spectrum as concentric
annular nngs centered on the central axes. A latticelike object gives
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(a) (b)

(c)

FIGURE 14.28 Fourier spectrum of an ideograph with a relatively small aperture. (a) A
Chinese character; (b) its spectrum; (c) center portion of the spectrum enlarged.

rise to a latticelike spectrum in the diffraction patterns. However, no
reference point like this exists in the original spatial image. Scanning
and processing of the whole area are then necessary to obtain the object
information in the image.

2. From the linearity property of Fourier transform as described by

Flaf,(x,») + f(x, ¥)] = aF,(u, v) + fo(u, v) (14.63)

where F,(u, v) = F[f,(x,y)] and Fi(u, v) = F[f(x,»)), the Fourier
spectrum can be well interpreted by superposition of component
spectra from their corresponding separable spatial image functions.

Several sampling devices were suggested by Lendanis et al. (1970) to
measure the amount of light energy falling within specified areas of the Founer
spectrum. With an annular-ring sampling device as shown in Figure 14.35a, the
total light energy of the Fourier spectrum measured along a circle centered on the
optical axis corresponds to one frequency in all directions. With a set of annular-
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(a) (b)

(C)

FIGURE 14.29 Fouricr spectrum of another ideograph with a relatively small aperture.

(a) Another Chinese character; (b) its spectrum; (e¢) center portion of the spectrum
enlarged.

ring sampling windows, a spatial frequency profile of the contents of the scan
area can be obtained simultaneously. The device can be used to detect the
regularity.

Figure 14.35b shows another sampling device (a wedge-shaped sampling
window) in which the light energy of the spectrum along a radial line (which
corresponds to a single direction in the spectrum) can be measured, and gives a
direction profile of the contents of the scan area simultaneously. This device can
be used to find the principal directions. These sample signatures, obtained either
from the annular ring or from a wedge-shaped sampling device (or from both) are
useful for pattern recognition.

14.34 Image Information Content in the Fourier
Spectrum: A Practical Example

As discussed in Section 14.3.3, every component object in a scan area has its own
spectrum. All these spectra will be superimposed and centered on the central
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(a) (b)

(€)

FIGURE 14.30 Fourier spectrum with a relatively small aperture. (a) A parking lot;
(b) its spectrum; (c) center portion of the spectrum enlarged.

axes. It 1s interesting to know how many percentages of data taken from the
central spectrum portion will be enough to preserve the image quality. No general
answer can be given, since this is highly problem dependent. For some cases the
picture quality is the most important requirement, and therefore a larger
percentage of the spectrum data should be used in the processing to preserve
both the low-frequency and all the high-frequency components of the image. But
in other cases, the processing speed will be the first cniterion, and even some
sacrifice of image quality will be tolerable. Numerous examples can be enum-
erated, one of which is air reconnaissance. All we need is to search the desired
objects within the scan area at a very fast speed and then focus our analysis on a
smaller area to get more details. The first thing of concern is the speed; that 1s
what 1s usually required in real-time processing or pseudo-real-time processing.

The complex image shown in Figure 14.36a has been Fourier transformed
and different percentages (5%, 10%, and 20%) of its spectrum were taken fto
restore the images. The processing results are shown in Figure 14.36b to e. Part
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(a) (b)

(€)

FIGURE 14.31 Founer spectrum with a relatively small aperture. (a) A simple pattern;
(b) its spectrum; (c) center portion of the spectrum enlarged.

(a) is the original image, (b) is its spectrum, and (c), (d), and (e) show,
respectively, the restored images when 95%, 90%, and 80% of the spectrum
information far away from the center was discarded. It can be seen that lots of
boundary information has been lost in the restored image shown in (c) (i.e., when
95% of the spectrum data was discarded in the restoration process). But restored
images like those shown in part (¢) are sometimes acceptable for applications
where high processing speed is of primary concern.

More examples are given below. Figures 14.37 and 14.38 are for two
regular patterns, and Figures 14.39 and 14.40 are for two images. Images restored
with different percentages of spectrum data far away from center discarded are
indicated. It is interesting to see that parts (c) of Figures 14.37 and 14.40 are all
obtained by discarding 95% of their spectra, but it looks that Figures 14.37¢ and
14.38¢ are much more blurred than Figures 14.39¢ and 14.40c. As a matter of
fact, they should be the same. The only difference is that the blurring effects in
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(a) (b)

(c)

FIGURE 14.32 Founer spectrum of a simple pattern with a relatively small aperture.
(a) A simple pattemn; (b) its spectrum; (c) center portion of the spectrum enlarged.

(a) (b)

FIGURE 14.33 Fourner spectrum of the simple pattern image with a relatively small
aperture. (a) A simple pattern of parallel lines; (b) its spectrum
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o

J

(b)

FIGURE 14.34 Fourier spectrum of an image with a relatively small aperture. (a) A
simple pattern; (b) its spectrum.

©

(a) (b}

FIGURE 14.35 Sampling devices. (a) Annular-ring sampling device; (b) wedge-shaped
sampling device.

the regular patterns are more sensitive to human vision than are those in the
images.

144 FAST FOURIER TRANSFORM

The Fourier transformation technique is a very effective tool, although a great
deal of computation is needed to carry out these transformations. This makes the

Fourier transformation technique impractical unless the computation can be
simplified.
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(c) (d)

(e)

FIGURE 14.36 Information content in the Fourier spectrum. (a) Ongmal image; (b)
spectrum; (c) restored image with 95% of spectrum data far away from center discarded;
(d) restored image with 90% of spectrum data far away from center discarded; (e) restored
image with 80% of spectrum data far away from center discarded.
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FIGURE 14.37 Information content in the Fourier spectrum. (a) Original image; (b)
spectrum; (c) restored image with 95% of spectrum data far way from center discarded; (d)
restored image with 90% of spectrum data far away from center discarded; (e) restored
image with 80% of spectrum data far away from center discarded; (f) restored image with
50% of spectrum data far away from center discarded.

FIGURE 14.38 Information content in the Fourier spectrum. (a) Original image; (b)
spectrum; (c) restored image with 95% of spectrum data far away from center discarded;
(d) restored image with 90% of spectrum data far away from center discarded; (e) restored
image with 80% of spectrum data far away from center discarded; (f) restored image with
50% of spectrum data far away from center discarded.
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v v

FIGURE 14.39 Information content in the Fourier spectrum. (a) Original image; (b)
spectrum; (c) restored image with 95% of spectrum data far away from center discarded;
(d) restored image with 90% of spectrum data far away from center discarded; (e) restored
image with 80% of spectrum data far away from center discarded; (f) restored image with
50% of spectrum data far away from center discarded.

(a) (h) (c)
(d) (n

FIGURE 14.40 Information content in the Fourier spectrum. (a) Original image; (b)
spectrum; (c) restored image with 95% of spectrum data far away from center discarded,
(d) restored image with 90% of spectrum data far away from center discarded; (¢) restored
image with 80% of spectrum data far away from center discarded; (f) restored image with
50% of spectrum data far away from center discarded.

(e)
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14.4.1 DFTof aTwo-Dimensional Image Computed
as aTwo-Step One-Dimensional DFT

The separability of the kernel property can he used in the simplification of the
transformation process. Rewrite Eqs. (14.32) and (14.33) as follows:

F(u, v) = ZAF[f(x, »]} (14.64)
and
Fu,v) = ZAF,[fx, y)]} (14.65)

In other words, the Fourier transformation operation on the image function f(x, y)
can be performed in two steps: first, transform the two-dimensional image
function column-wise i.e., perform one-dimensional transform along each
column of the image function f'(x, y), and then transform the results row-wise
(i.e., perform one-dimensional transform along each row of the resulting
spectrum), as indicated by Eq. (14.64). A different order of transformation can
also be taken: transform f'(x, y) row-wise first, and then transform the resuiting
spectrum column-wise, as indicated by Eq. (14.65).

Similarly, the inverse Fourier transform can also be performed in two steps,
such as

foy)=F UF@w.v) = F;HF T [F(u, o)) (14.66)
and
f&y)=F NFFlu, o)) (14.67)

The complex conjugate properties in the arithmetic operation can also be
used to simplify the transformation process. The conjugate of [/ (x, y)]* can be
written according to Eq. (14.61) as

* 1 N i2n(ux+oy)/ N )
LF(e, > = N l: 2) g F(u, v)e’ ¥ ] (14.68)

where e/2M /N g the inverse transformation kernel. Equation (14.68) can
further be written as

N-IN~-1

1 A
eyt =5 X F Flu, pyre et/ (14.69)
u=0 r=0

from which it is interesting to know that the inverse transformation kernel in Eq.
(14.68) 1s converted to a forward transformation kernel in Eq. (14.69). That is, it
is possible to use the same forward transformation kernel to do the inverse
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transformation. For a real function, where [f(x, ¥]* = f(x,y), Eq. (8.69) then
becomes

1 N=IN=1I . :
fry) =5 X X FXu, v)e2reto)/ (14.70)

N =0 =0
Comparison with Eq. (14.60) shows that the same forward transformation
algorithm can be used to do the inverse transform, as far as the Fourier transform
F(u, v) 1s conjugated to F*(u, v). Arguments similar to those used in Eqgs. (14.64)
and (14.65) are also valid for Eq. (14.70); thus

1y = F, 0w )] = FAZIF*u )} (14.71)

Note that unlike Eq. (14.67), &, and %, in Eq. (14.71) are forward Fourier
transforms. A conclusion can then be drawn that an inverse discrete Fourier
transform may be computed as the discrete Fourier transform of the conjugate,
and can also be computed as a two-step one-dimensional discrete Fourier
transform. One-dimensional discrete Fourier transform will then be the nucleus
of the discrete Fourier transform and the inverse discrete Fourier transform.

144.2 Method of Successive Doubling

As discussed in previous sections, a two-dimensional Fourier transform can be
separated into two computational steps, each of which is a one-dimensional
Fourier transform, and an inverse two-dimensional Fourier transform may be
computed as the discrete Fourier transform of the conjugate and can also be
computed as a two-step one-dimensional discrete Fourier transform. Thus, a one-
dimensional discrete Fourier transform will be the nucleus of the computation and
more effort should be concentrated on its algorithm design to make it more
effective.

The discrete Fourier transform for one-dimensional function is rewritten as
follows from Eq. (8.2):

| N=1 ,
Fuy==2 1 (e m/N -y =0,1,...,N—1 (14.72)
x=0
Regrouping in the same manner as in Egs. (14.60) and (14.61) the constant

multiplication factor for the convenience of analysis and letting W = e ="V the
discrete Fourier transform becomes

N1
Fu)= > fxyw~ u=01,....N—-1 (14.73)

x=0
giving a system of N simultaneous equations, corresponding to N different values

of u. It can be easily seen from Eq. (14.73) that N complex multiplications and N
complex additions are needed for each equation, or a total of 2N* complex
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arithmetic operations for the whole array [or a total of N? operations when f(x) is
a real function]. When N becomes large, the number of computations involved in
the Fourier transform is terribly great. Hence, computation must be simplified to
make the transformation technique practical. It became so only when the fast
Fourier transform (FFT) was suggested in 1965. The fundamental principle in
FFT algorithm is based on the decomposition of DFT computation of a sequence
of length N into successively smaller DFTs.

Assume that N = 2%, where L is a positive integer; Eq. (14.73) can then be
broken into two parts:

Fu) = > fOOWE + Y foW u=0,1,..., N -1 (14.74)

even odd

where W,, = e 7™/~ There are still N terms (or a sequence of N terms), in each
equation of the system above. Equation (14.74) can, in turn, be put in the
following form with » equal to a positive integer:

(N/2)-1 n (N/2)-1 (21
Fuy= S feNW¥'+ Y fQr+ WS (14.75)
r=0 r=0
or
(N/2)-1 2ar {(N/2)-1 2
Fy= Y fW)Y“+Wy > f@2r+ D)™ (14.76)
r=0 r=0

The first summation on the right-hand side consists of a sequence of N/2 terms.
Note from the definition of W that

Wi = (e = 2N = (14.77)
Use Wy, as the kernel for the sequence of N/2 terms; then we have
(NV/2)-1 (V/2)—1
Flu) = ;} QX Wy )™ + Wy E) fQ@r+ D)Wy )™ (14.78)
or
F(u) = G(u) + WyH(u) (14.79)
where
(N/2)-1
Gu) = rgj J@Y Wy )™
and

(N/)—1
H{u) = ;) FQ@r4+ D)Wy )™
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are two (N /2)-point discrete Fourier transforms. Note also that

(WN/2)1‘+N/2 = (WN/z)“ (14.80)

Both G(u#) and H(u) are periodic in u with a period of N /2. Careful analysis of
Eqgs. (14.74) through (14.80) reveals some interesting properties of these expres-
sions. It is noted in Eqgs. (14.78) and (14.79) that an N-point discrete transform
can be computed by dividing the original expression into two parts. Each part
corresponds to a (N/2)-point discrete transform computation. Obviously, the
computation time required for (N /2)-point DFT will be more greatly reduced than
that for N-point DFT.

By continuing this analysis, the (N/2)-point discrete transform can be
obtained by computing two (N /4)-point discrete transforms, and so on, for any N
that is equal to an integer power of 2. The implementation of these equations
constitutes the successive-doubling FFT algorithm.

The implementation (Sze, 1979) of Eq. (14.78) is shown in Figure 14.41 for
N = 8. Inputs to the upper (N /2)-point DFT block are f(x)’s for even values of x,
while those for the lower (N /2)-point DFT block are f(x)’s for odd values of x.
Substitution of values 0, 1, 2, and 3 for « in

(N/2)-1 ]
Gy= 3 fQYWy)" (14.81)
=0
7{0) G
o F(O
(D tN G(B\ /"/N
'/—- 3 -point F(1)
W
f(&4) | DFT for | G(2) ’;F(Z)
w
f(6) | even x . N
- F(3) .
3 : _—_——012_—.
Wi /w
N
FAeY) | H \ F4)
N W - wk,
’ = -poi H(1l N 2z X \
7(3) 2 point| H( ﬁ )
DFT for // WN
1(5) H( N\
— odd ¥ / \\1/6 F(6)
(7 H(3 N
7N | 7; -
Wy

FIGURE 14.41

Implementation of Eq. (14.78) for N = 8.
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and

(N/2)-1
H(ll) = Z f(2r + 1)(WN/2)’-“ (]482)
r=0

gives G(0). ..., G(3)and H(0), .. ., H(3), which combine according to the signal
flow graph indicated in the figure to give the Fourier transforms F(u)’s, u = 0,
l,...,7. W), ..., W} on the graph indicate the multiplying factors on H(u)s,
u=0.1,....3, needed in Eq. (14.79). Note that G(u) and H(u) are periodic in u
with a period of N/2, which is 4 in this case [i.e., G(4) = G(0); G(5) = G(1);
H(4) = H(0); H(5)=H(1); etc.]. Thus F(7)= G(7)+ W]iH(T) = G(3) +
Wl H(3). With this doubling algorithm, the number of complex operations
needed for the eight-point DFT is reduced. The total number of complex
operations required before using the doubling algorithm is 8% or 64, whereas
that needed after the doubling algorithm is used is 8 + 2(8/2)* or 40, where
(8/2) is the number of mathematics operations needed for each of the (8/2)-pint
DFTs, and 8 (the first term in the expression) is the number of addition operations
needed. Replacing f(2r) by g(r) and letting » = 2/ in Eq. (14.78), we then
separate G(u) into two parts, one for even »’s and the other one for odd »’s. We
then have

G(u) = G (u) + Wy Gy (1) (14.83)
where
(N/)—1 p
Giw)= 3 gROWy), (14.84)

=0
represents that part of G(u) for even valtues of », and

(N/4)—1
G, (u) = 120 g+ D)Wy (14.85)

represents that part of G(u) for odd values of 7. G,(u) and G,(u) are periodic with
period of N /4. Similarly, we have

H(u) = Hy(u) + Wy, Hy(u) (14.86)

where H(u) represents that part of H(u) for even values of #, and H,(u) for odd
values of r. Again H,(u) and H,(u) are pericdic with a period of N /4. Then the
(N/2)-point DFT is decomposed as shown in Figure 14.42. The upper (N /4)-
point DFT block implement Eq. (14.84) and the lower (N /4)-point DFT block
implements Eq. (14.85).
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FIGURE 14.42 Implementation of Eq. (14.83) for N = 8.

The decomposition of the DFT computation keeps on going until
(N/28=1)-point DFT becomes a two-point DFT. For the case we have now, that
is, N = 8, (N /4)-point DFT is a two-point DFT, where

G\(0) = f(0) + f(&Wy,4 = F(0) + f(4)
G,(1) = £(0) + W ,f (4) = f(0) — £(4)

The complete 8-point DFT (or FFT for the case N = 8) is implemented as shown
in Fig. 14.43.

By means of the successive-doubling algorithm, the total number of
complex operations changes from the original N* to N + 2(N /2)2, and then to
N +2[N/24+2(N /4)2], and so on, depending on the number of stages into which
the N-point DFT can be decomposed. If N is large and equal to 2%, then the
number of stages is L, and the number of complex operations changes from N2 to
N+N+.--+N=NxL=Nlog,N. For the example just given, the total
number of complex operations will be N x L =8 x 3 =24.

To maintain the structure of this algorithm, the inputs to the DFT block
must be arranged in the order required for successive applications of Eq. (14.78).
For the FFT computation of an eight-point function {f(0), f(1), ....f(7)}, inputs
with even arguments f(0), f(2), f(4), f(6) are used for the upper {(N/2)-point
DFT (four-point DFT in this case), while those with odd arguments f(1), f(3),
f(5), f(7) are used for the lower four-point DFT. Each four-point transform is
computed as two-point transforms. We must divide the first set of inputs into its
even part {f(0), f(4)} and odd part {f(2), f(6)}, and divide the second set of
inputs into { (1), f(5)} as the even part and {f(3), f(7)} as the odd part. That is to

(14.87)
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FIGURE 14.43 Complete eight-point DFT.
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say, we must arrange the inputs in the order {f(0), £(4), f(2), f(6), (1), f(5),
SQ3), f(7)} for the successive-doubling algorithm of an eight-point function as
shown in Figure 14.44. It is not difficult to note that the input and output are
related by a “bit-reversal” order, as shown in Table 14.1. Note that in Figure
14.43, Wy = ¢/*™~ and N = 8; we then have W = 1, W} = ~1, W} = — W},
WS = —W;, and W), = —W}. Utilizing these relations, Figure 14.45 results. By
the same argument if N = 16, the number of stages is log, 16 or 4, and the
number of complex operations is 16 log, 16 or 64. The reordering of the inputs

Input order

Bit-reversal

Argument Binary-coded binary-coded New argument Outputorder
f(0) 0 0 0 0 0 0 0 0 F(0)
f(4) 4 1 0 0 0 0 1 1 F(1)
f(2) 2 0 1 0 0 1 0 2 F(2)
f(6) 6 1 1 0 0 1 1 3 F(3)
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FIGURE 14.44 Reordering of inputs for successive-doubling method.
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FIGURE 14.45 Bit-reversal-ordering relationship between input and output in the FFT

algorithm.
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Two-point Four-point Eight-point Sixteen-point
transform transform transform transform
1(0)
F(8)
r(4)
112}
1{2)
J(10)
£(86)
f(14)
FFT
f£(1)
1(9)
F(5)
£{13)
F1(3)
F(11)
S(7)
1(15)

FIGURE 14.46 Reordering of inputs for successive-doubling method when N = 16.

for the successive-doubling algorithm and its implementation are shown, respec-
tively, in Figures 14.46 and 14.47.

As mentioned earlier, the Fourier transform technique became widely used
only afier the effective successive-doubling FFT implementation was suggested in
1969 by Cooley et al. Figure 14.48 shows a FORTRAN implementation of the
FFT algorithm suggested by them. This program consists of four parts, the first
part being parameter specification (from lines 1 to 6). The second part (i.e., from
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First stage Second stage Third stage Fourth stage
I-distance 2-distance 4-distance 8-distance
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FIGURE 14.47 Bit-reversal order relationship between input and output in the FFT
algorithm when N = 16.

lines 7 to 18), including the “DO 3” loop, takes care of the bit-reversal-order
processing of the input data for later successive-doubling computations. The third
part of the program (from lines 19 to 30), including the *“DO 5™ loop, performs
successive-doubling calculations as required. In the final part, the “DO 6” loop
divides the results by N. Readers can analyze this program using N = 16 and see
the detailed steps in getting the input data reordered, such as

F(2) & F(9)

F(3) & F(5)

F(4) & F(13)

F(6) < F(11}

F(8) « F(15)

F(12) « F(14)
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SUBROUTINE FFT(F,LN)
COMPLEX F(1024),U,W,T,CMPLX
PI1=3.141593
N=2**LN
NV2=N/2
NM1l=N-1
J=1
DO 3 I=1,NMl
IF(1.GE.J) GO TO 1
T=F(J)
F(J3)}=F(I1)
F(I)=T
1l K=NV2
2 IF(K.GE.J) GO TO 3
J=J-K
K=K/2
GO TO 2
3 J=J+K
DO 5 L=1,LN
LE=2**L
LEl1=LE/2
U=(1.0, 0.0)
W=CMPLX(COS(PI/LEl),-SIN(P1/LEl))
DO 5 J=1,LEl
DO 4 I=J,N,LE

IP=I+LEl
T=F(IP)*U
F(IP)=F(1)-T
4 F(I)=F(I)+T
5 U=U*y
DO 6 I=1,N
6 F(I1)=F(1)/FLOAT(N)
RETURN

END

FIGURE 1448 A FORTRAN implementation of the successive-doubling FFT algo-
rithm. (Adapted from Cooley et al., 1969.)

where < indicates the exchange of the two input functions; or

F(1) < f(8)
fQ2) = f4)
13)+ f(12)
J5) < f(10)
J() < f(14)
f(1) & f(13)

These exchanges are shown in symbolically Figure 14.49.
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f(0)
— f(8)
— f(4)
f(12)
— f(2)

— f(10)
1{6)
f(14)
f(1)

7(9)
— f(5)

£(13)
f(3)

f(11)
7y —

f(15)
FIGURE 14.49 Input data after bit-reversal processing for N = 16.

For N = 16 the “big DO 5” loop repeats four times. This corresponds to
log, 16, or four stages. During the first stage, eight butterfly computations are
performed between f(0) and f(8), £(4) and f(12), f(2) and f(10), £(6) and f(14),
f(1) and £(9). £(5) and f(13), £(3) and f(11), and between f(7) and f(15). Note
that inputs used for computation are at a “one-distance” apart. During the second
stage, eight butterfly computations are performed. But the computations are now
carried out at a “two-distance” apart, with the first four inputs, f(0), £(8), f(4),
and f(12), as a subgroup; f(2), /(10), £(6), and f(14) as another subgroup; and so
on, as shown clearly in Figure 14.47. In the third-stage computation, the “four-
distance” spacings are chosen such that butterfly computations are carried out
between f(0) and f(2), (8) and f(10), f(4) and f(6), and f(12) and f(14). In the
fourth stage, which is the last stage when N = 16, “eight-distance” butterfly
computations are performed: between f(0) and f(1), £(8) and £(9), f(4) and £(5),
f(12) and f(13), f(2) and f(3), and so on.



Transforms and Image Processing in theTransform Domain 453

Our earlier discussion on two-dimensional, forward, and inverse FFT
provided the necessary information for their implementation. Remember that
the same forward FFT is applicable to the inverse transform by using the complex
conjugate of the Fourier transform as the input to the FFT subroutine. A
FORTRAN implementation of the successive-doubling two-dimensional FFT
algorithm can be designed as shown in Figure 14.50 by taking advantage of the
ingenious one-dimensional FFT as suggested by Cooley et al.

Owing to the fact that W,Z+N/ - —W{, the number of complex multi-
plications needed for the successive-doubling FFT computational configuration
would be further reduced by a factor of 2. Therefore, the total number of complex
operations needed for one-dimensional DFT would be (N log, N)/2. For a two-
dimensional N x N image function f(x, y), we need (N log, N}/2 computational
operations for one value of u, and therefore (N x N log, N)/2 for N values of
u. By the same reasoning, we need (N x N log, N)/2 operations for N values
of v. The total number of complex operations will then be N? log, N. But if the
two-dimensional Fourier transform is evaluated directly, N2(N?) = N* complex

o *%%% FFT MAIN PROGRAM *#*%
o CALL FFT SUBROUTINE FOR X DIRECTION

DO 20 I=1,128
DO 30 J=1,128
F(J)=AR(I,J)*((-1)**(I+J))
30 CONT INUE
LN=7
CALL FFT(F,LN)
DO 40 J=1,128
AR(I,J)=128*F(J)

40 CONTINUE
20 CONTINUE
C CALL FFT SUBROUTINE FOR Y DIRECTION

DO 50 J=1,128
DO 60 I=1,128
F(I)=AR(I,J)

60 CONT INUE
LN=7

CALL FFT(F,LN)

DO 70 I=1,128

AR(I,J)=F(I)

70 CONTINUE
50 CONTINUE
END

FIGURE 14.50 A FORTRAN implementation of the two-dimensional FFT algorithm.
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TABLE 14.2 Computational Advantage Obtained for Various Values of N

Conventional Two-
two- dimensional Computational
dimensional FFT, advantage,
N L FFT, N* N? log, N N*/log, N
2 1 16 4 4.00
4 2 256 32 8.00
8 3 4.096 192 21.33
16 4 6.554 x 10* 1024 64.00
32 5 1.049 x 10° 5120 204.8
64 6 1.678 x 107 2.458 x 10* 682.67
128 7 2.684 x 108 1.147 x 10° 2341.0
256 8 4.295 x 10° 5.243 x 10° 8192.0
512 9 6.872 x 10'° 2.359 x 10° 2913 x 1¢*
1024 10 1.100 x 102 1.049 x 107 1.049 x 10°

operations will be required. Table 14.2 shows a comparison of N* versus
N?log, N for various values of N.

Thus far, discussions have emphasized the forward FFT. As discussed in
Section 14.4.1, the inverse transform can be performed using the same transfor-
mation algorithm as long as F(u, v) is conjugated to F*(u, v).

14.5 OTHER IMAGE TRANSFORMS

The Fourier transform is just one of the transformation techniques frequently used
in image processing. Other transformation techniques have also been shown to be
very effective: Walsh transforms, Hadamard transforms, Karhunen-Loéve trans-
forms, and so on. Like Fourier transforms, all of these transforms are reversible;
that is, both forward and inverse transforms can be operated on functions that are
continuous and integrable, thus making it possible to process an image in the
transform domain.

14.5.1 WalshTransform
If the function

1 n=1
glr.w) =5 [1 (= 1)PP i (14.88)
i=0
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is used for the forward transform kemnel in the generalized transformation
equation (14.10), the transformation is known as the Walsh transform. Thus
the Walsh transform of a function f(x) is

1 N—1 n—1 b
Wu) = N Zg)f(x) ﬂo(—l)”l(' 1w (14.89)

where N is the number of samples and is assumed to be 2%, with n as a positive
integer. b,(z) represents the kth bit in the binary representation of z with
the zeroth bit as the least significant one. For example, if n =4,
z=13(1 1 0 1 in binary representation), then by(z) =1, b,(z) =0,
by(z) = 1, and b;(z) = L. The kernel for n =4 1s

1 n—1 b ()b
g(x, u) _— (—1) L n—1 -
v

_i _ 13D (1} b ()b (1) b1 ()b ()b (x)by (1)
=5l )

By substituting x = 5, u = 7 in the expression above, we obtain the value of the
kernel for the circled entry in Figure 14.51 as

1 Ix04+0x1+1x1+0x1
) ==[(—1
g(5.7) = [(=D) ]
1 1 1
= [(-D=——
N[( )] N
which is a negative value. It can be seen from Figure 14.51 that the kernel is
symmetrical and orthogonal, and therefore the inverse kernel 4(x, «) is identical to

the forward kernel, except for the constant multiplicative factor 1/N. Hence we
have

n—1
h(x ) = [T(—1)P-t0 (14.90)

i=0

The inverse Walsh transform is then

N—1 n—1
S@ = T W [T 1) (14.91)

Let us start from the smallest N (N = 2) and see how the array builds up with the
Walsh transformation kernel. When N = 2 (or n = 1), Eq. (14.88) becomes

l b
x.u)=—(—1 ()b (1)
glx. u) N( )
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X
¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
]
0 + + + + + + + + + + + + + + + +
1 + + + + + + + + - - - - - - - -
2 + + + + - - - - + + + + - - - -
3 + + + + - - - - - - - -+ + + +
4 + + - - + + - - + + - - + + - -
5 + + - - + + - - - - + + - - + +
6 + + - - - - + + + + - - - - + +
7 + o+ - - - @ + o+ - -+ o+ 4+ o+ - -
8 + - + - + - + - + - + - + - + -
9 + - + - + - + - - + - + - + - +
10 + - + - - + - + + - + - - + - +
11 + - + - - + - + - + - + + - + -
12 + - - + + - - + + - - + + - - +
13 + - - + + - - + - + + - - + + -
14 + - - + - + + - + - - + - + + -
15 + - - + - + + - - + + - + - - +

FIGURE 14.51 Values of the Walsh transformation kernel for N = 16.

The simplest kernel in the Walsh transformation will be that as shown in Figure
14.52. For N =4 (or n = 2), Eq. (14.88) becomes

g(x ll) — __l_ (_ l)h.](_\')bl(u)+b](.\')bu(u)
' N

The corresponding Walsh transformation kernel will be the array shown in Figure
14.53. Following the same process of arithmetic substitution, the arrays formed
for the Walsh transformation kernel for N = 8 (or » = 3), and for N = 16 (or
n = 4) are shown in Figures 14.54 and 14.51, respectively.

Extending the Walsh transformation as derived for the two-dimensional
case, we obtain the transformation kernel pair as follows:

1 7=l ; v
gy u ) =—T1 (— )Py (05h 0P (14.92)

i=0
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X 0 1
u
[
|
0 + : +
—_——.-'—._I—-———-—
|
1 + : -

FIGURE 14.52 Values of the Walsh transformation kemel for N = 2.

and

] n—1 ’ i
hx. yiu,v) = & l'[o(—1)”'("”’"*‘*““’*”"’)"""'—"" (14.93)
=

As discussed in Eq. (14.90), the same kernel can be used for both forward and
inverse transformation, so we can then write the Walsh transform pair as follows:

—~1N=1
W, v) =— Z Y fxy) ﬂ( 1)Prdnm- (0 +0.006,-- (6) (14.94)
x=0 y=0
and
N—1N=1 n—1
flx,y) = l > Y W) [ 1) =140 01 0) (14.95)
u 0 r=0

Equations (14.94) and (14.95) demonstrate that one algorithm can be used for the
computation of both the forward and inverse two-dimensional Walsh transforms.

X 0 1 2 3
2]
|
0 + + ]+ +
1 + + : - -
2 _:__T_{_é_m:"
3 + - - +

FIGURE 14.53 Values of the Walsh transformation kernel for N = 4.
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X 0 1 2 3 4 5 6 7
U
0 + + + + + + + +
1 + + + + - - - -
2 + + - - + + - -
3 + + - - - - + +
4 + - + - + - + -
5 + - + - - + - +
6 + - - + + - - +
7 + - - + - + + -

FIGURE 14.54 Values of the Walsh transformation kernel for N = 8.

It is obvious from Egs. (14.94) and (14.95) that the transformation kernels
g(x, y; u, v) and h(x, y; u, v) are symmetrical and separable, or

glx.y; u, v) = g(x, u)g,(v, v) (14.96)
h(x, y: u, v) = h(x, Why{(y. v) (14.97)

where

1 nl Y U
g0 1) = Iylxw) = — [T(~1)7 0100
i=0

and

n—|
£2040) = hy(y,2) = = T] (= e 10

N =0
That is, both the computation of a two-dimensional Walsh transform W (u, v) and
the computation of its inverse transform can be done by successive applications
of a one-dimensional Walsh transform, and one algorithm can be used for all
those computations. The procedures in computation will be the same as for
Fourier transform. Analogous to the fast Fourier transform, a fast algorithm in the
form of successive doubling can also be written for the Walsh transform. If the
multiplying factors 1, W, W2, ..., in FFTs are all omitted, the algorithm for the
fast Walsh transform (FWT) and that of the fast Fourier Transform will be similar,
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SUBROUTINE FWT(F,LN)
REAL F(1024),T
N=2**LN
NV2=N/2
NM1l=N-1
J=1
DO 3 I=1,NM1
IF(I.GE.J) GO TO 1
T=F(J)
F(J)=F(I)
F(I)=T
1 K=NV2
2 IF(K.GE.J) GO TO 3
J=J-K
K=K/2
GO TO 2
3 J=J+K
DO 5 L=1,LN
LE=2%%],
LE1=LE/2
DO 5 J=1,LEl
DO 4 1I=J,N,LE
IP=I+LE]1l
T=F(IP)
F(IP)=F(I)-T
4 F(I)=F(I)+T
5 CONTINUE
DO 6 I=1,N
6 F(1)=F(I)/FLOAT(N)
RETURN
END

FIGURE 14.55 A FORTRAN implementation of the successive-doubling FWT
algorithm.

and FORTRAN implementation of the successive-doubling FFT algorithm shown
in Figure 14.48 can be used for the FWT with U, W, and PI deleted and the word
“COMPLEX” changed to “REAL” (see Figure 14.55).

14.5.2 Hadamard Transform
If the function

n=1

1 b (x)h, (1)
glx.u)y = N(_l)g (14.98)

is used for the forward transform kernel in the generalized transformation
equation (14.10), the transformation is known as the Hadamard transform.
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Thus the Hadamard transform pair is

1 M- ibi(x)hl(x)h,(u)
Fyw) = = L f()(=1)'= u=0.1,....N—1 (14.99)
x=0

' N-1 “2 h,(x)b, (1)
S =" Fplu)(—1)- x=01,....N—-1 (14.100)
=0
where N is the number of samples and is also assumed to be 2", with n a positive
integer. The same arguments on b,(z) as those used for the Walsh transform also
apply to this transform.

Some properties of the H matrices are useful in their generation:

Property I. A Hadamard matrix 1s a square matrix whose rows (and
columns) are orthogonal with elements either +1 or —1. For an N x N matrix,

HyHY, = NI (14.101)
and
Hy =H} (14.102)

where Hy and H}, denote, respectively, a Hadamard matrix and its transpose, and
[ is an identity matrix. The lowest-order H matrix (i.e., for N = 2) is defined as

1 1

=1

(14.103)

1
Property 2. Hy' = NHN

Property 3. A simple recursive algorithm can be used for the construction
of the Hadamard transformatton matrices, namely,

Hy  Hy

HZN = HN _HN

(14.105)

where Hy and H,, represents matrices of order N and 2N, respectively. If “+”
and “—" are used, respectively, for the “+1” and “—1” entries for notation
simplification, then

|+ +
me|t ¥
and
+ 4+ 4+ +
+ -1+ -
H,=|1..75T..7
¢ + +:- =
+ - -
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By the same recursive relation, we can write g as

Sequence
+ 4+ i+ i+ + 0
oot Tt iR T
S S il B
= | s SO R S e o B
$TIH, -Hy| T+ +i 4+ - = = i
tooot oTiT ko6
e e 2
+ —i- 4= 41+ -] 5
(14.106)
and H,, as
Hy Hy
H]b"' H H
g 418
Sequence
+ 4+ + ++ A+ A+ i+ A+ o+ 0
+ - + -4+ -+ =14+ -+ =+ - 4+ =] 15
+ 4+ - -+ - =+ + - i+ - -
+ - - 4+4+ - -+ 4+ - - +1+ - - +

............................................................

—i-+ -+ 12
+

E 4
B . —i4+ - — 4+ 4+ + -| 1N
g IR RS TURRGt BT ST B
-+ —h - —— 4 - =+ — +| 14
+ 4+ - -+ - - -+ 4+ -+ o+
Fo- = i+ = — - 4+ 4 — = 4 -
T L RURENE PR O
-t —i— 4k — i+ = i -+ - 13
e e e H T S S 5
+ - - +im ok —i— 4+~ = = 4|10
(14.107)

The H matrix formed from the recursive construction algorithm is unordered in
sequence (i.e., the number of sign changes in the rows/columns is unordered).
This can be reordered by making a change in the kernel, the details of which are
discussed later.
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The two-dimensional Hadamard transform can be formulated as
Fy(u, v) = H(u, v)f(x. y)H(u. v) (14.108)

where Fy(u, v) is the Hadamard transform of f(x,y) and H(u, v) is the N x N

symmetric Hadamard transformation matrix. The inverse Hadamard transform of
Fy(u,v) s
H ’

H{u, v)Fy(u, 0)H(u. v) (14.109)
or
H(u, v)H(u, v)f(x, )H(u. 0)H(u, v)

after substitution of Fy;(u. v) from Eq. (14.108). By using the relation expressed
on Eq. (14.101), we have

H(u, 0)F (e, v)H(u. v) = N*f(x. y) (14.110)
Thus
f(x,y) = ——H(u v)Fy(u, 0)H(u, v) (14.111)

which forms a Hadamard transformation pair with Eq. (14.108).
In order to put the sequence in increasing order, let us let the forward
transformation kernel be of the following form:

n ol
glx.y;u,v) = %(_ 1)2,,., [6,(x)p,(1)+b, 0)p (0] (14.112)

The Hadamard transform becomes
1 — _ "l LR Y 1] Al
Fulu.0) = Z }: (5. )= 1) 2 PP TP 0] (14.113)

where both x and « are in binary representation. b;(z) represents the kth bit in the
binary representation of z with the zeroth bit as the least significant one. p;(r) is
defined as follows:

pO(u) = bn—-](“)
pl(u) = bn-l(u) + bn-2(“)
o) = by, (u) + b,_3(u) (14.114)

pn—l(”) = bl(“) + bO(”)
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and
n—1
S piu) = byl)  (mod 2) (14.115)
=0

where b, (1) represents the leftmost binary bit of u; b,_,(u), the next-leftmost
bit of #; and so on. The summations in Egs. (14.114) and (14.115) are performed
in modulo 2 arithmetic. Similar arguments apply to py(v). i=0,1.....n— 1.

Example. For the one-dimensional Hadamard transform, compute the
values of the ordered Hadamard kernel for N = 8 (or n = 3).

Solution. When w=2 (0 1 0 in binary representation) and x =
6 (1 1 0 in binary), we have

Pou) =0
() = by () + b () =0+ 1 =1
P2(u) = by (1) + by() =1+ 0 =1

n—1

;) bi(x)pi(t) = by(X)po(u) + by (x)p, (10) + by (x)py(u)

=0+1+41
=2

= 0 (mod-2 arithmetic)

Hence, the entry (when 1t = 2, x = 6) in the Hadamard kernel is (—1)” or +.

When u =5 (1 0 1 in binary representation) and x =4 (1 0 0), we
have

poltr) =1
Pi() = by(u) +by(0) =140 =1
Py =b(u)+ by =0+1=1

n—1

Z b{x)p;(u) = by(xX)py(ur) + by (x)p (u) + by (x)py(u)

=0
=0+041=1

Hence, the entry (when i = 5, x = 4) in the Hadamard kernel is (—1)' or —.
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An ordered Hadamard transformation kernel can be constructed as shown in
(14.116).

u~{ 0 1 2 3 4 5 6 7 Sequence
0+ + + + + + + + 0
L+ + + + - = - - 1
2 0+ + - - - - + + 2
3|0+ + - = 4+ 4+ = - 3 (14.116)
41+ - -+ + - - + 4
51+ - — 4+ = 4+ + - 5
6 |+ — + — — 4+ — + 6
T+ -+ - 4+ - + - 7

By comparing (14.116) with (14.106), we can see that the sequence in (14.116) is
ordered.

As can be seen from Eq. (14.112), the kerne! for the two-dimensional
ordered Hadamard transform is separable. Thus

Fu(u,v) =

Zl'—'

Z_: |: > S Y(= I)Z:f:bn(-")l),(u) (—I)Z:"] bJU’)P.(l‘)jl
y=0

il

ﬁi

72 Figa, p)(— 1) o PP )
(14.117)

where Fy{(u, y) is a one-dimensional Hadamard transform. Analogous to the two-
dimensional FFT, the one-dimensional Hadamard transform can be successively
used for the two-dimensional transformation and a fast algorithm can also be
established for it. Analogous to the Fourier transform, the Hadamard transform as
expressed by

Fyu) = fo (X)(—I)Z::’l b fw) (14.118)
x=0

can be decomposed into the sum of two series of terms as

(N/2)—=1

Fyuy= > f(zr)(_1)2,';,]1),('«)'3,(2'-)
r=0

(N/2)-1 n
S fQr A+ D))l CreD (14.119)
]'=0
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Noting that

n—|\

b2+ 1) = ):b(zr) (14.120)
and

Forodds 9 b r el — (14.121)
we have

§=:0' PB2r + 1) = po(u)bo2r + 1)

+ 5 ph 2+ 1) (14.122)

or

S p Wb 2r + 1) = po(u) + Zp,(u)b @2r+1) (14.123)

1=0

since we know that bo(2r + 1) is definitely equal to 1. With knowledge of Egs.
(14.120) and (14.121), Eq. (14.123) can be put in the following form:

n—1

ZP:(u)b (2r + 1) = py(u) + 3_ pu)bi(2r) (14.124)
=0

Equation (14.119) then becomes

(N/2)~1 (N/2)-1 -1
FH(M):[ Z 2R+ (- I)Pu(“) Z f(2r+1)](—1)2*2“‘4(”)["(2’)
(14.125)
Fu(u) = G) + (- D" H(u) (14.126)
where
(N/Z)—l ) Zu—l )b I
Glu) = 5_“,0 F@r)(— 1) o Pllb 20 (14.127)
(N/D)-1 nol
Huy= Y fQr+ 1)(=1)loptobn (14.128)
r=0
and

b, () = polu) (14.129)
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The sign of H(x), dominated by (—1)"~'*“) is positive for ¥ < N/2 and negative
for # > N/2. Following the decomposition procedure, implementation of these
equations constitutes the successive FHT algorithm.

14.5.3 Discrete Karhunen-LoéveTransform

We discussed the discrete Karhunen-Loéve transform in detail in Section 7.3.
What are we going to add here is the application of this transform in image
processing. Let us put the N x N matrix f(x, y),

£O.00  fO.1) o FON=1)
, 1.0
flx.y)y= : : (14.130)
fI(N=-1.0) .- JIN-1LN-1)
into the form of an N?-element vector as expressed by
Xji
X2
X =| (14.131)
Xjj
Xin2
where x;, i = 1,2, ..., K, represent image samples, and x;;, x5, ..., x;: corre-

spond, respectively, to f(0.0), f(0.1)...., f(N—1, N—1) of the ith image
sample. The transform can then be treated as a statistical problem. Following the
discussions in Chapter 5, we have

C, = E{(x ~m)(x —m,)"} (14.132)

where C, is the covariance matrix, and m, the mean value of x, both of which can
be approximated by

k
m, = ]%Zx, (14.133)
=1
and
| X
C, =~ 7 Y x;x! —mm! (14.134)
=1

where K is the number of image samples, m, is an N? vector, and C, is an
N? x N? matrix. The problem we now have is to transform the original image
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vector X into a new image vector y so that the covariance matrix C, will be a
diagonal one. Thus we have

y=B(x-m,) (14.135)

where (x — m,) represents the centralized vector, and the N> x N? matrix B is
chosen such that its rows are eigenvectors of C,; thus

€ €1 BN E
) € Y
B=| | = ' (14.136)
€; €il €in2
eNZ eNl’l €N22 e €N2N2
where e; = [¢;), . .., e;52] 18 the ith eigenvector of C, and e;; is the jth component

of the ith eigenvector. The new covariance matrix C, is then

C, = E(B(x — m,)(x — m,)' B}

_ BC.BT (14.137)
which is a diagonal matrix, for the reasons given below. Since
y=B(x-m,) (14.138)
Then
x —m_= By (14.139)

where y = [y1,¥,,...),] and B is an orthogonal matrix. Let B, denote the rth
column of B (and B, the rth row of BT). Then B, is chosen first in such a way that
the variance of y, is maximized; B, is chosen so that the variance of y, is
maximized subject to the condition that y, is uncorrelated with y,; and similarly
for the remaining y’. The variance of y, is maximized subject to the condition

that y, is uncorrelated with y;, y,, . ... y,_;. Let us denote the variance of y, by 4,.
Since y, = BTx, we have

i, =BICB, (14.140)
As the y’s are uncorrelated, we also have

BIC,B. =0 forr#s (14.141)
This means that

B'C.T=A (14.142)
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which is diagonal with elements 4, Ay, ..., /'.p arranged in order of magnitude.

A 0

Ay

C, = o (14.143)

- /"J

0
/..NZ

with elements equal to the eigenvalues of C, (4, i =1,2,..., N?), where 4, is

the variance of the ith element of y along eigenvector e;. x can be reconstructed
from y by using

x =B’y +m, (14.144)

This is because B~! = B’ for the orthonormal vectors.

The Karhunen-Loéve transform is useful in data compression and image
rotation applications. But this transform has the drawback of not being separable,
and therefore no fast algorithm exists for computing the transform.

146 ENHANCEMENT BY TRANSFORM
PROCESSING

14.6.1 Low-Pass Filtering

As discussed at the beginning of this chapter, image enhancement can also be
carried out by the transform method. In this method the image f(x.y) is first
transformed into F'(u, v), and then processed in the transform domain to meet our
requirements. Filtering is one of the processes most frequently used in the
transform domain. Since convolution in the spatial domain is converted to
simpler multiplication in the transform domain, the processing work required is
greatly simplified. On the other hand, extra work will be introduced in the
transform and inverse transform of the image function to yield the final spatial
image that is expected. A trade-off between these two is therefore needed in
making the choice as to the domain in which we are going to work.

The entire procedure in transform processing can be put in block form as
shown in Figure 14.56, where f(x,y) and f(x,y) represent, respectively, the
original image and the expected processed image. H(u. v) is the process expected
to be used in the transform domain, and G(u. v) is the result after processing in
the transform domain, which can be represented by

G(u, v) = Flu, v)H(u, v) (14.145)
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Fx v Forward Fanv o G (.v) e Fiw
Original | transform i transform _—Expccled
image processed
image

FIGURE 14.56 Block diagram of image processing in the transform domain.

Filtering is one of the processes used to advantage in the transform domain.
Digital filtering can be implemented ideally in the transform domain because only
pure mathematics is involved rather than physical components.

Various kinds of filters are available. They can be grouped into two main
categories: low-pass filters and high-pass filters. As we know, the high-frequency
information content of the spectrum (say, a Fourier spectrum) is contributed
primarily by the edges and sharp transitions, while the low-frequency information
content is contributed by the brightness and the image texture. Depending on
what we expect of the processed images, either high-pass or low-pass filters will
be chosen to fit the requirements.

Among the low-pass filters, there are for conventional use the ideal low-
pass filters, Butterworth filters, exponential low-pass filters, trapezoidal filters,
and others. For the ideal low-pass filter shown in Figure 14.57a, the transfer
function is

| if D{u, v) < D,
H(u,v) = {0 if D@, 1) > D, (14.146)
where D is the distance from point (u, v) to the origin of the frequency plane such
that D = (u* + 1?)"/?, and D, is the cutoff frequency, a specified nonnegative
quantity, the value of which depends on what we required in the processed image.
D, may be obtained by decreasing D until the energy passed exceeds a prescribed
percentage of the total energy.
For the Butterworth low-pass filter shown in Figure 14.57b, the transfer
function is

1

H —
) = DG /Dol

(14.147)

where n is known as the order of the filter, and D, is the cutoff frequency, which
is defined at the open point on the abscissa where H(u, v) is equal to the one-half
of its maximum value. The image processed with this Butterworth filter will be
expected to have less blurring effect, since some of the high-frequency-compo-

nent information will be included in the tail region of this filter, as can be seen in
Figure 14.57b.
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1
Hu. v
H(u v (u. v)
0.5
D
0 Dy o 0
(a) (b)
'
| 1] |
{
Hue.v) H(u.v) -19
0.368}----- !
: 1
! D ! D
0 Dy o 0 Dy D,

(c) (d)

FIGURE 14.57 Low-pass filters. (a) ideal; (b) Butterworth; (c) exponential; (d) trape-
zoidal.

The exponential low-pass filter is shown in Figure 14.57c. Its transfer
function is

H(u, v) = e~ P@/Df (14.148)

The cutoff frequency D, is defined at the point on the abscissa where H(u, v)
drops to a point equal to 0.368 of its maximum value. » in the transfer function is
the variable controlling the rate of decay of the H function. More blurring will be
expected from the exponential low-pass filter than from the Butterworth filter,
since less high-frequency component information is included in the processed
image.

A trapezoidal filter as shown in Figure 14.57d 1s halfway between an ideal
low-pass filter and a completely smooth filter. Depending on the slope of the tail
of this trapezoid, the high-frequency-component information content will be
different, and therefore the blurring effects will be different for different cases.
From the functional diagram shown in Figure 14.57d. H(u,v) assumes a
value

D -D
1—(D—Dy)coth = 11—
Dy =Dy
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when D falls at a point between D, and D,. Thus we obtain the transfer function
of the trapezoidal filter as

l D L Du_
H(u, v) = =9 i D,<D<D (14.149)
' Dn—"D] U == — |
0 D > D,

Figure 14.58 illustrates the blurring that occurred after the processing of an ideal
low-pass filter.

14.6.2 High-Pass Filtering

Similar to low-pass filters, we have ideal high-pass filters, Butterworth high-pass
filters, exponential high-pass filters, and trapezoidal high-pass filters. As implied
by the name “high-pass™ the lower-frequency-component information is attenu-
ated without disturbing the high-frequency information. These kinds of filters are
generally used to achieve edge sharpening. The transfer functions for these filters
are shown in Figure 14.59. Contrary to the transfer function shown by Eq.

(a)

le)

FIGURE 14.58 Blurring process for an ideal low-pass filter. (a) Original image; (b)
when Dy, = 0.25; (c) when D, = 0.15; (d) when D, = 0.08: (¢) when D, = 0.04.
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FIGURE 14.59 High-pass filters. (a) Ideal; (b) Butterworth; (c) exponential (d) trape-
zoidal.

(14.146), the transfer function of an ideal high-pass filter is given by the
following relation:

0 if D < D,

Hu.v=11 it psp,

(14.150)

where D = D(u, v) = (u? + v*)"/?. That of the Butterworth high-pass filter is

1

Hw o) =17 [Dy/D(s, )P

(14.151)

Note the difference between this expression and Eq. (14.147). Values of H(u, v)
increase with an increase in D(u, v). H(u, v) = 0 when D(u, v) is very small;
H(u,v) =1 when D(u,v) is much greater than Dj; and H(u,v) = 0.5 when
D(u,v) =Dy and n = 1.

For exponential high-pass filters, the transfer function will be represented
by

H(u,v) = e~ [Po/D(u.0)])* (14.152)
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H(u, v) is zero when D(u, v) = 0, and the cutoff frequency D, is then defined at
the point on the abscissa when H(u, v) = e ! or 0.368 of the maximum value of
H(u, v). H(u, v) increases as D increases, and equals 1 when D approaches oo as
the limit. That is, more high-frequency-component information will be included
in the processing, but low-frequency-component information will be suppressed.

Analogous arguments can be applied to the high-pass trapezoidal filter. The
transfer function of this filter can be derived similarly as follows:

0 if D <D
H(u, v) = g)"_%'l if D,>D>D, (14.153)

Comparison of these four transfer functions shows that the high-frequency-
component emphasis increases in the order: Butterworth high-pass filter, expo-
nential high-pass fitter, and trapezoidal high-pass filter, but the preservation of
low-frequency information is in the reverse order for these filters. The proper
choice of filter is largely problem dependent. Figures 14.60 and 14.61 show the
results obtained by applying ideal high-pass filtering.

14.6.3 Enhancement Through Clustering
Specification

Although lots of approaches have been suggested, to date, no general procedure
can be followed for image enhancement. Approaches available for image
enhancement are very problem oriented. Nevertheless, a more-or-less generalized
approach for image enhancement is still being sought. An approach by clustering
specification inspired from bionics has been suggested by Bow and Toney (1983).
The basics of this approach is quite intuitive. This follows from what we generally
expect on a processed image:

1. Object—distinctive: 1t is expected that all the desirous objects should
be included in the processed image and, in addition, those separate
objects should be as distinct from one another as possible.

2. Details—discernible: Fine details of the desirous objects are expected
to be discernible as well as possible.

That is, in viewing and in analyzing an image, the first thing to do is usually to
separate the objects from the whele image and then focus our attention on the
details of each of the objects. Following such bionic requirements, this algorithm
consists of first applying the natural clustering method to identify the objects and
then allocating appropriate dynamic ranges for each individual object in the order
of their importance, so as to be able to fully utilize the gray levels to delineate the



474 Chapter 14

FIGURE 14.60 Ideal high-pass filtering process. (a) Original images; (b) spectra,
(c) processed images.
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(d) (e) (f)

FIGURE 14.61 Examples of ideal high-pass filtering. (a) Original image; (b) spectrum,;
(¢) when D, = 0.02; (d) when D, = 0.05; (e) when D, = 0.07; (f) when Dy = 0.20.

(a)

FIGURE 14.62 Image enhancement through clustering specification. (a) Original image;
(b) image after processing.
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details of the objects of interest, leaving the other objects, such as the back-
ground, suppressed in the picture. Any clustering approach can be used for
clustering purposes. Two of these have been used for illustration: the extreme
point clustering approach and the ISODATA algorithm.

Figure 14.62b shows the image after processing of the original image,
shown in Figure 14.62a. Remember that the same image has been studied in
Chapter 5. By using this method, a general routine procedure can be followed and
the same result obtained with much less human intervention.

PROBLEMS

14.1  Given that the Fourier transform of f(x, y) is F(u, v), prove that the
Fourier transform of f(ax. by) is

1 U v
L.
|ab] (a b

14.2 Show that the Fourier transform of a rectangular function with

magnitude A (Figure P14.2) is a sinc function. Sketch the resulting
Fourier spectrum.

Ry ‘

X0 X
FIGURE P14.2

14.3 Consider the following 3 x 2 array f({,#) and the 2 x 2 array

A, n):

n 0
2 1 4 1
1 3 5 -
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14.4

14.5

14.6

14.7

14.8

Show the various steps for obtaining the convolution of these two
arrays. If f({,n) and h({,n) are arrays of sizes (M, x N;) and
(M, x N,), respectively, what will be the size of the resulting array?

Assume that x and y are continuous variables. Show that:
(a) The Fourier transform of the partial derivative with respect to x
of an image function f(x, y) is

[of(x. 0]

F = j2ruf(u, v)
ox

and that with respect to y of f(x,y) is
0 (x, )]
A

(b) The Fourier transform of the Laplacian of an image function,
f(x, ), is equal to

—@nY(* + P)Fu, v)

F = j2rvF(u, v)

Indicate the principal difference between the convolution operation
and correlation.

For an image function f(x,y), x,y =0, 1,2,..., N — 1, prove that
the average brightness of the image can be found as F(0, 0), where
F(...) is the Fourier spectrum of the image f(x, y).

When an image f(x, y) is multiplied by (—1)*"” before transforma-
tion, the center of the frequency plane is moved to (N /2, N/2). If the
unitary DFT of f(x, y) has its region of support as shown in Figure
P14.7, what would be the region of support of the unitary DFT of

(=1"f(x »)?

FiGURE P14.7

Discuss the effect of the size of the aperture on the Fourier spectrum
of an image.
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14.9

14.10

14.11

14.12

14.13

14.14

14.15

Chapter 14

The two-dimensional Fourier transform of an image function
fx,y)  xy=0,12 ..., N—1

can be implemented by

] N=1N=1 n
Flu) == 3 T f(x.) exp[—j i+ v.v)]

x=0 y=0 N
vv=012, ... N-1

Someone suggests an algorithm to speed up the transform process
by partitioning the image function f(x, y) into 16 smailer subarrays
and performing two-dimensional FFT on the 16 subarrays. Would

that be a good idea? If yes, explain why it works. If no, explain why
not.

Reorder the inputs for the successive doubling method when
N = 32, and draw the structure of the computation.

Note that in Fig. 14.45, the f’s and F’s are ordered differently in
order to retain the butterfly computation format. Work out the flow
graph of the FFT algorithm with the inputs in natural order.

Derive an equivalent algorithm for the FFT decimation-in-frequency
decomposition of an eight-point DFT computation.

Write a program to generate, display, and print out some regular
patterns for later processings (e.g., forward and inverse FFT).

Write a program for two-dimensional FFT for one of the images
(Figures A.1 to A.15) in Appendix A, and also for the patterns
generated in Problem 14.13.

(a) Obtain the Fourier spectrum with two-dimensional forward
transform and restore the original image (or pattern) with the
two-dimensional inverse transform.

(b) Rotate the pattern by an angle and transform it with two-
dimensional FFT. Compare the spectrum obtained with the one
obtained in part (a).

(c) Rotate the image chosen from any one of the images given in
Appendix A by an angle and transform it with two-dimensional
FFT. Compare the spectrum with the one obtained in part (a).

Use the program obtained from Problem 14.14.

(a) Translate the pattern as generated in Problem 14.13 by a
distance, and transform it with two-dimensional FFT.
Compare the spectrum obtained with the one obtained in part ().



Transforms and Image Processing in theTransform Domain 479

(b)

Translate the image chosen from any one of the images given
in Appendix A by an angle, and transform it with two-
dimensional FFT. Compare the spectrum with the one obtained
in part (a).

14.16 Use the Fourier spectrum (a) obtained from Problem 14.14 and/or
14.15. Discuss the information content in the Fourier spectrum of a
regular pattern and of an image by:

14.17

14.18
14.19

14.20

(@)
(b)
()
(d)

(a)

Restoring the pattern/image with 90% of the spectrum data far
away from center discarded.
Restoring the pattern/image with 90% of the spectrum data far
away from center discarded..
Restoring the pattern/image with 80% of the spectrum data far
away from center discarded.
Restoring the pattern/image with 50% of the spectrum data far
away from center discarded.

Construct the unordered H matrix for N = 16 and mark the

number of sign changes in each row.

(b)

Rearrange the H matnx in part (a) so that the sequence is in
increasing order.

Write a Program for the FHT.
Use an alternative method to prove Eq. (14.143), Start with

y=B(x —m,)
and
€ € €N
€1 e €N
B=
€pn21 €Nt Epnopn
remembering that e; = [¢,;, €5, . . ., €;,] is the ith eigenvector of C,

and ¢;; is the jth component of the ith eigenvector. Prove that C, 1s a
diagonal matrix.

Write a program for each of the following filters:

(a)
(b)
(c)
(d)

Ideal low-pass filter

Butterworth low-pass filter
Exponential low-pass filter
Trapezoidal low-pass filter

Apply these filters to one of the images in Appendix A and the
pattern that you generated. Discuss the results obtained when used
for processing.
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14.21 Write a program for each of the following filters:
(a) Ideal high-pass filter
(b) Butterworth high-pass filter
{c) Exponential high-pass filter
(d) Trapezoidal high-pass filter
Apply these filters to one of the images in Appendix A and the
pattern that you generated. Discuss the results obtained when used
for processing.
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Wavelets and Wavelet Transform

151 INTRODUCTION
15.1.1 WhyWavelet for Image Processing

Before selecting an algorithm to process an image, first we must determine which
type of information in the image we are most interested in, the local information
or the global information. The approaches discussed in Chapter 12 are useful for
the local information extraction by use of the neighborhood information of pixels
in an image. When our interest is in global information (i.e., global image
properties, both geometry and intensity based), those algorithms described in
Chapter 14 are good choices. In these algorithms the discrete image data is
represented in form of a matrix, and a separable linear transform, implemented as
multiplication of the image function by a transformation matrix, is used to
generate a set of basis functions for the representation of the entire image. Fourier
transform, Walsh transform, Hadamard transform, etc., are examples of this type
of transform. When approaches of the image transform are adopted, it is assumed
that underlying images possess some characteristics that may be related to the
transformed basis functions and that the whole image is treated as a single entity
and cannot be processed by parts.

Image transform (e.g., two-dimensional Fourier transform) is, indeed, very
powerful and effective for image analysis. It transforms the two-dimensional
image signal from spatial domain to transform domain in which many character-
istics of the image signal are revealed. However, due to the fact that the

481



482 Chapter 15

transformation kernel {e.g., exp[—/2m(ux + vy)] in the Fourier transform} is a
global function, the double integration process, in the definition of the Fourier
transform, cannot be carried out until the entire image (or a continuous sequence
of images) in the whole of the real spatial axes (—o0, o0) is known. This means
that a small perturbation of the function at any point along the spatial axes
influences every point on the frequency axes, and vice versa. If we imagine the
image function f(x,y) as the modulating function for exp[—j2n(ux + vy)], a
perturbation at any point on the xy axes will propagate through the entire u, v
axes. Put in other words, the Fourier spectrum does not provide any of the
location information about the image signal. From the Fourier spectrum we have
no way to tell where did the event occur. So the Fourier transform is good for a
still mmage or a single-frame image, but not for nonstationary or transitory
characteristics like trends. To overcome this deficiency, we need an approach
which can perform both the location- and frequency-domain analyses on an
image. By means of such an approach we can then extract the local frequency
contents of this image. For this reason, we have the short-time Fourier transform
(STFT).

Short time Fourier transform (STFT) is a time-frequency analysis for a one-
dimensional signal, or a location-frequency analysis for a two-dimensional image.
STFT can be briefly interpreted as the following. When we want to know the local
frequency contents of a two-dimensional signal in the neighborhood of a desired
location in a planar image, we can remove the desired portion from the given
image by a window function, and then proceed the Fourier transform of that
removed portion. Because of the windowing nature of the STFT, this transform is
also referred to as the windowed Fourler transform. Advantage of this transform
is that some information about “where” in the xy spatial domain and with “what”
frequency content of the signal are provided. Nevertheless, this transform still has
the shortcoming in that once a window is selected, the size of the window is fixed
for all frequencies, and the location-frequency resolution is fixed throughout the
processing. The question then arises as to the possibility of having a windowing
technique with variable-sized regions. With such a technique, a window with
larger region coverage (lower in frequency) can be chosen to acquire the lower
frequency information, and a window with smaller region coverage (higher in
frequency) to acquire the high-frequency components of the two-dimensional
signal. If so, it will be much more suitable for the image processing. This
objective leads to the development of the wavelet functions Y(x,y), and the
wavelet transform, where the signal is decomposed into various scales of
resolution, rather than frequencies. Multiresolution divides the frequencies into
octave bands, from w to 2w, instead of uniform bands from w to w + Aw. Figure
15.1a and b shows the time-frequency plot for the short-time Fourier transform
and the time-scale plot for the wavelet analysis. From the figure it can be seen that
short-time intervals are natural for high frequencies.



Wavelets and Wavelet Transform 483
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FIGURE 15.1 (a) Time-frequency plot for short time Fourier transform (STFT). (b)
Time-scale plot for wavelet transform.

15.1.2 WhyWavelet Analysis Is Effective

The word wavelet (small wave) originates from the French name ondelettes.
Similar to the sinusoid, it has the oscillating wavelike characteristic shown in
Figure 15.2. However, it differs from the sinusoid in that it is a waveform of
effectively limited duration that has an average value of zero. Because of this
property, the wavelet expansion allows a more accurate local description and
separation of signal characteristics. On the contrary, a Fourer coefficient
represents a component that lasts for all time from —oo to +o00. For this
reason, a temporary event, for example, a delta function, would require an

os} ”

0.5

A 2 A

0 5 10 15

FIGURE 15.2 A wavelet in practical use.
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infinite number of sinusoidal functions that combine constructively, while
interfering with one another destructively to produce zero at all points except
at t # 0. However, this 1s not the case when we use a wavelet, because a wavelet
coefficient represents a component that is itself local. Hence, the wavelet
expansion and wavelet transform are especially suitable for the processing of
an image where most details could hardly be represented by functions, but could
be matched by the various versions of the mother wavelet with various transla-
tions and dilations. Wavelet is really a good mathematical tool to extract the local
features of variable sizes, vartable frequencies, and at vanable locations in an
image.

As we will see later, the number of the wavelet coefficients drop off rapidly
for image signals. This is another reason why the wavelet transform is so effective
in image compression.

15.2 WAVELETS AND WAVELET TRANSFORM

Analogous to the Fourier transform we have continuous wavelet transform
(CWT), wavelet series expansion, and discrete wavelet transform (DWT).
However, we should recall that there is a main difference between Fourer
transform and wavelet transform. The orthogonal basis functions used in Fourier
transform are sin(kwyt) and cos(kwyt). They extend from minus infinity to
positive infinity, and are also nonzero over their entire domain. Hence, the Fourier
transform does not have compact support. Neither does the Short time Fourier
transform, even though it could provide the time-frequency information. This is
because in STFT, as mentioned in the previous section, once the window is
chosen, the window size will be fixed for all frequencies.

However, the wavelet transform has compact support, since in the wavelet
transform the basis function used 1s

V() =27 (21— k) (15.1)
which satisfies two conditions. One is the admission condition
00 2
J de < 00 (15.2)
e @

and the other is

ro W) dt =0 (15.3)

It is obvious from the above conditions that by reducing the scale parameter, the
support of ¥, , is reduced in time and frequency.
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The continuous wavelet transform of a function f(f) € L? with respect to
some analyzing wavelet ;, is defined as

W= = | v d (159

and
V() =22t — k) (15.5)

Both ;j and £ in the above expression are real numbers. The variable j reflects the
scale (width of a particular basis function), while & specifies its translated position
along the r axis. The wavelet transform coefficients are calculated as the inner
products of the function being transformed with each of the basis functions. The
inverse transform is in the form of

f(t)—E Z &V () (15.6)
where

G = SO0 = | S0 d (15.7)

This set of expansion coefficients ¢, , are called the discrete wavelet transform
(DWT) of f(¢), and the above expression (15.6) is the inverse discrete wavelet
transform (IDWT). They form a transformation pair.

For a function f(x.y), the wavelet functions and the two-dimensional
continuous wavelet transform are, respectively,

l/lj,kr,ky(x’ )’) - 2":”(21)5 - k.\" 2’)’ - ky) (158)
W, () = (fED) Y, i) = J J SN ) drdy  (15.9)

—0Q

where 4, and %, are, respectively, translations in x and y coordinate axes. The
inverse two-dimensional CWT is

Jx.y) = Z Z Z koW ek (X0 9) (15.10)
where

s = LMW pe = [ | S6Wnenydrdy 151
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153 SCALING FUNCTION AND WAVELET

15.3.1 Scaling Function and theVector Space
Spanned by the Scaling Function

The idea of multiresolution is frequently used in the discussion of a wavelet
system. There are two functions needed to be defined: the scaling function and
the wavelet. Let us first define the scaling function and then define the wavelet in
terms of it. Say we have a basic scaling function:

o(1) € L? (15.12)

where L? is the space of all functions f(f) with a well-defined integral of the
squares of modulus of the function;

Joo | f(O)) dx < o0 (15.13)

-0

and a set of scaling functions ¢, (7):
ey =ot—k) kel (15.14)

which 1s generated by the basic function ¢(¢) with k translates. Z is the set of all
integers from —oo to oo. Thus, we can define the vector space of signals § as the
functions, all of which can be expressed by

fi) = ;cwk(r) (15.15)

Let us use v, to represent the space spanned by these functions, i.e.,

vy = span (¢, (1)) for all integers from — oo to oo
k

v is then the space spanned by the ¢, = 2/2¢(2't — k), which is generated by
changing the time scale of the scaling functions from ¢(t) to @(2't), j=1,2, ...
to increase the size of the subspace spanned, and also by translates for all values
of k. The above expression implies that if f(f) € v;, f(¢) can then be expressed

[ =Y co@t—k) forf(nev, (15.16)
k

For j < 0, the scaling function ¢,(f) is wider and is translated in larger steps.
These wider scaling functions can represent coarse information. When j > 0, the
scaling function ¢, (r) becomes narrower and is translated in smaller steps. This
narrower scaling function can represent finer details. Note that f(f) =
et —k) is now in v, ie., in the signal space spanning over ¢,(2'1).
The spaces have the scaling property

fev, < f(20) e vy, (15.17)
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This implies that the space that contains signals of high resolution will also
contain those of lower resolution. Thus,

v CCV  CvyCv CvyC---CL2 (15.18)
or
vV, C Vi forallj e Z (15.19)

with v__, = {0} and v, = L?. This means that if ¢(f) is in v, it is also in v,. It
also means that ¢(f) can be expressed in terms of a weighted sum of shifted ¢(2¢)
as

oy = Y h(m)v292t —n)  nel (15.20)

where #(n) in the above recursive equation are the scaling function coefficients, a
sequence of real or perhaps complex numbers, and the constant V2 is added here
to maintain the norm of the scaling function with the scale of 2. For the Haar
scaling function, #(0) = 1/4/2 and k(1) = 1/+/2, we then have

@(f) = e26) + o2t — 1) (15.21)

15.3.2 Wavelet and theVector Space Spanned by
theWavelet Function

As we discussed in the previous paragraph, the space v, spanned by ¢(f — k) is
included in the space v; which is spanned by ¢(2f — k). Increasing the scale will
allow greater and greater details to be realized, and so the higher resolution space
v;, which is the space spanned by @(2¢— k), will better approximate the
functions. Nevertheless, if we introduce another set of functions that span the
differences between the spaces spanned by scaling functions of various scale
rather than using the scaling function Q’_/k(f) alone, the signal will be much more
better described or represented. These functions are called wavelets Y, (1). These
two sets of functions are orthogonal. The orthogonality property among these two
sets of functions provides advantages in making it possible to simplify the
coefficient computation.

Let us define the orthogonal complement of v, in v;,, as W,. This means
that all members of v, are orthogonal to all members of ), or

v=vi_ @ W_, forallje Z (15.22)

and

v LW, (15.23)
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where @ and L denote, respectively, superposition and orthogonality. Thus we
have

Vo =V @ Wi,

: (15.24)
L) Vi &b Wl
vl = vO @ WO
and
Vj:V()@W()@W]@Wz@"'@I’VJ_l (1525)

where v is the initial space spanned by the scaling function ¢(t — k), and Wy,
f=0,1,2,...,j— 1, are the orthogonal components (or disjoint differences).
This is shown in Figure 15.3.

By the same reason discussed in Eq. (15.20), when W, C v, these wavelets
can be represented in terms of a weighted sum of the shifted scaling function
@(2t) as

() =S V202t —n) nel (15.26)

-+ Vj »l
- Vj_l -
-« Vl —

v, i
v
- : :
VO WO Wl W2 * & & ‘Vj_]

VOCVIC Vzc---(:L2

FIGURE 15.3 Scaling function and wavelet vector spaces.
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for some set of coefficients 4, (n). For the Haar scaling function, 4,(0) =1 /N2
and h,(1) = —1/+/2. We then have

() = @(28) — (2t — 1) (15.27)

With both the scaling function and wavelets we can then represent a large class of
signals as

10 = 403,40+ > % ) (15.28)
J=h
or
fO =2 ¢ 2@t —k)+ 3 fj dy 221 — k) (15.29)
k k J=h

where ¢, ; and dj are the coefficients which can be computed by inner products
as

Gk = (10, 03,40) = | 000,400 (15.30)

and

dy = {0 () = jf(z)w,k(f) dt (15.31)

It should be repeated here that there is an orthogonality requirement for the
scaling functions and wavelets. With this requirement it would make the
coefficient computation simple. Secondary, it is possible for the scaling function
and wavelets to have compact support, because the wavelet coefficients drop out
rapidly asj and k increase. The signal can therefore be efficiently and effectively
represented by a small number of the coefficients. This is why the DWT is
efficient for signal and image compression. To give a clear picture of the scaling
functions and wavelets as well as their relationships, the Haar function, which is
an odd rectangular pulse pair, might be the best one for explanation (see Figures
15.4 and 15.5).

Note that the complete sets of wavelets at any scale completely cover the
interval. Recalling that

v, = 22W(@x — k) (15.32)

as the wavelet is scaled down by a power of 2, its amplitude is scaled up by a
power of 2'/2 to maintain orthonomality.
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]

FIGURE 154 Haar scaling functions that span v;.

154 FILTERS AND FILTER BANKS

Filter is a linear time-invariant operator h(n). It performs the convolution process.
If vectors x(») and y(n) denote, respectively, the input and output vectors, they
can then be related as

y(n) = Y h(k)x(n — k) (15.33)
k
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n v n=2=k
[ ] 0 0 where jis the scaling (dilation)
and £ is its translation
C 1 = [ =
[ ] 1 VVO j=0.k=0
C 1[ I 2 j=1,k=0
W,
[ l 3 =1,k=1
I /
—] =2,k=0
I 4 N\ )
I I 5 I_Z,I\ =
r W

10 j=3k=2

"Lr H j=3k=3
r-l_r 12 }W; j=3k=4

F‘U IS / j=3k =7

FIGURE 15.5 Haar scaling function and wavelets decomposition.
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or
y=hxx (15.34)

where the symbol x represents convolution. When the vector x(n — k) is a unit
impulse at n = k [i.e., x(n — k) = 0, except when »n = k], we then have

y(n) = h(n) forn=0,1,2,... (15.35)

and y(#) is the impulse response.

A signal usually consists of low-frequency and high-frequency contents,
The low-frequency content is usually the most important part of the signal, as it
gives the signal its identity. The high-frequency content imparts flavor or nuance.
There are two technical terms conventionally used in the wavelet analysis,
namely, approximations A and details D. Approximations refers to the high-
scale-factor, low-frequency components of the signal, which can be matched with
the stretched wavelets, while details refers to the low-scale-factor, high-frequency
components which are to be matched by the compressed wavelets. These two
component parts of the signal can be separately extracted through a filter bank. A
filter bank is a set of filters used to separate an input signal into frequency bands
for analysis. For our case two filters are usually chosen for the bank, the high-pass
and the low-pass filter. The high-scale-factor, low-frequency components of the
signal can pass through the low-pass filter, while the high-frequency components
of the signal (i.e., the low-scale-factor components) are singled out at the output
of the high-pass filter.

154.1 Decimation (or Downsampling)

As we discussed in the last paragraph, the high-frequency and low-frequency
components of a signal can be separated by a filter bank, which consists of a high-
pass and low-pass filter. OQutput of the low-pass filter will retain the high-scale-
factor, low-frequency components, while that of the high-pass filter retains the
low-scale-factor, high-frequency components. At the outputs of the filter bank,
the total number of samples will obviously be double. To keep the number of
samples the same as before, a decimation (or called downsampling) by 2 will be
needed. Simply select only the even samples to perform this process. The input
x(n) and output y(n) of the downsampler is related by

y(n) = x(2n) forneZ (15.36)
or

y(n) = x(n)o(n — 2k) kel (15.37)
k
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where 6(n — 2k) is a sequence of unit impulses. if

x(n) = ..., x(—=4), x(=3). x(=2), x(—=1), x(0), x(1), x(2). x(3), x(4).
(5), x(6). x(7). X(8). ...

then
y(n) = ... x(=3), ¥(=2), (= 1), 0}, ¥(1), ¥(2). ¥(3}, (4). ¥(5).
(6), W(7), ¥(8). ...
or
x(-'-4)
x—13)
: : x(=2)
W=2) 1 00 00O0O0O0O0TO0CO O O|x(=D
W=D 0 01 000 0O0O0O0OCO O O] x0)
¥(0) 00001 00O0O0O0O0O0 O] x()
V) {=|0 0 0 0 00O 1 00 0 00 0] x(2
y(2) 00000 O OO0 T1T 00 0 0| x3)
¥3) 0000 O O0O0COO0O0T11O0 0 x4
¥4) 000 00O O OO0TO0CO0OTUO0TO0 1| x(5
: ; x(6)
x(7)
x(8)
or
fy] = [Downsampling | 2](x] (15.38)

Figure 15.6 shows a stage of filter bank including downsampling by 2, where S
denotes the original signal X(n), n = —o0,....—3,-2,-1,0,1,2.3,..., 00.
cA, the approximation, 1s the low-frequency component part, while ¢D, the

H.P. .

Filter | @ D
L —

L.P A

Filter @

FIGURE 15.6 One stage of the filter bank downsampling by 2.
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H.P. 2 cf)
S —— HP 2 of)

LP. 2 eA, HP —@—— en,
LP —@— e,

L.P. 2 cA

FIGURE 15.7 Decomposition of a signal into lower resolution components.

details, the high-frequency part of the original signal both at half-resolution. This
decomposition process can be iterated with successive approximation being
decomposed in turn. The algorithm gives as outputs ¢D,. ¢D-. ¢D;, etc, which
compose the wavelet coefficient set. The signal S is thus broken down into many
lower-resolution components, as shown in Figure 15.7. ¢D, in Figure 15.7 is at a
half-resolution of ¢D,; ¢D, is at a half-resolution of ¢D,; etc. They are the
wavelet coefficients and give the “details” information of the signal. The
decomposition can proceed until the individual details information consists of
a single sample or a single pixel in our image processing application. However, a
suitable number of levels should be chosen based on the individual problem. To
meet our image processing need, three levels of decomposition is usually
appropriate.

Three aspects are involved in the wavelet analysis and synthesis: (a) Break
up a signal, either one-dimensional or two-dimensional, to represent it as a set of
wavelet coefficients—this is what we conventionally call discrete wavelet trans-
form (DWT); (b) modify the wavelet coefficients—processing in wavelet trans-
form domain. For the purpose of denoising, we can look for those undesirable
components which are similar to the noise and remove them. Similarly, for the
purpose of data compression, we can ignore those transform coefficients that are
insignificant. (¢) Reconstruct the signal from the coefficients after their modifica-
tion. This process is conventionally referred to as inverse discrete wavelet
transform (IDWT).

154.2 Interpolation (or Upsampling)

When we reconstruct the signal from the wavelet cocfficients. upsampling (or
interpolation) followed by convolution is involved. In simple words, upsampling
is a process to lengthen the components of a signal by inserting zero’s between
samples. Mathematically, the results yielded after the upsampling are

ynf2) forn=—co,...,—4.-2.0.2,4.6..... oo (even 1)

x(n) = 0 forn=—o00,....—5.-3.~1.1.3.5..... oo (odd n)
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¥'(n) and y(n) are, respectively, the output and input of the processing segment.
Put in matrix form, we have

X(=2)] [1 0000 000 0 0 Of[v=1)
Yl o1 000000000 0
¥(0) 001 000000 0 0|0
¥(1) 0001 000O0GO O[] 0
¥(2) 00001 00000 0w
Y3 |=(0 00001 0000 0| 0
X(4) 000 00O0T1 000 02
X(5) 000 0O0GO0COTL 0O0 O} O
¥(6) 000000001 0 0l w3
X(7) 00000O0O0OO0OT1 Of| 0
¥(8) 00000O0O0O0O0O0 1] ud

Qr

[x'] = [Upsampling 1 2][y] (15.39)

Figure 15.8 shows the signal reconstruction procedure.

Figures 15.6 and 15.7 show the operation of convolution followed by
downsampling performed on the signal S, and Figure 15.8 shows the reverse
operation sequence of upsampling followed by convolution in reconstructing the
signal. These two sets of operations are the most important building blocks in
algorithms for both the discrete wavelet transform and inverse discrete wavelet
transform.

When no modifications are made on the wavelet coefficicnts, the original
function should be recovered perfectly from the components at different scales to
make the wavelet transform meet the reversibility requirement. We should note
that we cannot choose any shape and call it wavelet for the analysis. We are
compelled to choose a shape determined by the quadrature mirror decomposition

D ®r H.P

CD—@—— H.P. S
_—%—-—-@—— LP

ch @ L.P

FIGURE 15.8 Signal reconstruction.
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FIGURE 159 Examples of the wavelets proposed.

filters. It is therefore more practical for us to design the appropriate quadrature
mirror filters first and then create the waveform. Many forms of wavelet have
been proposed. To name a few for illustration, some of them are shown in Figure
15.9.

15.5 DIGITAL IMPLEMENTATION OF DWT

15.5.1 One-Dimensional Discrete Wavelet Transform
(DWT)

The definition of the continuous wavelet transform as discussed in Section 15.2 is
reproduced here for convenience:

oo}

Byl =S = | 160,40 de (15.40)
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and
W, 0 = 222t — k) (15.41)

The process of wavelet transform is actually a process to compute the set of
coefficients. Each of these coefficients is the inner product of input function f(f)
and one version of the basic 1y function. Let us put the above expression in the
following form:

o0
c (scale, position) = J f{y(scale, position) dt
-0
where ¢ is the wavelet coefficients, f(¢) is the signal and (scale, position)
represents the various versions of the basic wavelet | scaled at j and translated by
a distance k. This means that the wavelet coefficient c(scale, position) represents
the degree of similarity between the input function f(¢) and that particular version
of the basic function. The set of expansion coefficients, ¢, , with scale at 2, and
translated with &, j, k =0, 1,2, ... can be used as amplitude weighted factor on
the basis functions to represent the function f(¢), or

Jo =3 ;cj,k i) (15.42)
J

Since the basis functions are carefully selected and are orthogonal (or orthono-
mal) among one another, the inner product taken between any two basis functions
is zero. This indicates that these two functions are completely dissimilar. A signal
is made up of constituent components, which are, respectively, similar to some
but not all of the various basis functions. These components will manifest
themselves in large coefficients for those basis functions which they are similar
to, but small, even zero, for the rest of the basis functions. Hence, except for a
few, most coefficients will be small. For this reason the signal can then be
represented compactly by only a small number of transform coefficients. This is
the heart of the discrete wavelet transform.

Processing in the wavelet transform domain works in such a way that when
an undesirable component (say, noise) is similar to one or a few of these basis
functions, then it will be easy for us to look for them. The denoising process can
then be performed by simply reducing or even setting to zero the corresponding
transform coefficients, and then reconstructing the signal according to the
expression (15.42) with the new values of the transform coefficients.

Figure 15.10 shows the multiresolution pyramid decomposition to generate
the wavelet coefficients. ¢, ; in this figure represents the coefficients of signal
component in the original signal, which is assumed in the space v;, and is

Cr={fr b0 = Jf(t)fp(?t e (15.43)
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and the function f(¢) can be expressed as

J= Zk:cj—l.k(pj»—l.k(t) + ; di_1 1¥,-1.4(D) (15.44)

where ¢;_, ; are the coefficients of half-resolution low-frequency signal compo-
nents. d;_; ; are the coefficients of half-resolution high-frequency signal compo-
nents, and represents the “detail” or difference between the original signal ¢, ;
and its downsampled approximation signal ¢,_, ;. d,_, ; is the quarter-resolution
high-frequency component, and d,_; ; is the %—resolution high-frequency compo-
nent, etc. If N = 2™, after m iterations a signal with N samples will become a
single data point.

Figure 15.11 shows the discrete approximations, respectively, after the first,
second, and third decomposition of a speech signal. Figure 15.12 shows the
discrete wavelet representations d;_ ,, d;_,, and d;_3, of the same speech
signal. Figure 15.13 gives the comparison of the reconstructed signal and original
signal. They are the same.

Inverse discrete wavelet transform can be implemented in the reverse order,
which is shown in Figure 15.14, and self-explanatory.

15.5.2 Two-Dimensional Discrete Wavelet Transform

All we have discussed so far is the one-dimensional discrete wavelet transform.
The concept developed to represent a one-dimensional signal with wavelets and
approximation function can be extended to represent a two-dimensional signal.

Let us go back to the expression of the two-dimensional continuous wavelet
transform.

o.9]

Wos ) = [ | e n dxay (15.45)

where k., k, represent, respectively, the translations along the two axes x and y.
Y ki ), ki by, =0,1,2, ... represent, respectively, the various versions of
the basic wavelet Y scaled at 2/, j = 0, 1,2, ... and translated by distances &, and
k,. Each of these filter versions is a two-dimensional impulse response, and
would, respectively, respond only (or primarily) to the objects of different sizes on
the particular location on the image. In other words, if the image is band limited
to an interval over which at least one y;(u, v) is nonzero, then f(x, y) could be
recovered from that filter output alone,

To represent a two-dimensional signal (or an image) we use two-dimen-
sional wavelets and a two-dimensional scaling function. The two-dimensional
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FIGURE 15.11 Discrete approximations after the first, second, and third decomposition
of a speech signal. (a) The original speech signal; (b) approximation component after the
first decomposition; (c} approximation component after the second decomposition; (d)
approximation component after the third decomposttion.
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FIGURE 15.12  Discrete wavelet representations d,._; ,, d,_5 ,, and d;_j , of the speech
signal shown in Figure 15.11.

scaling function is an orthogonal basis function at scale 2/ for the image function,

S y):
Credy = Px —k, 2y — k) (15.46)
For the case where the two-dimensional scaling function is separable, we have

Pty = ¢(2x = k)op(Zy — k) (15.47)
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FIGURE 15.13 Comparison of the reconstructed signal with the original signal. (a)

Original signal at resolution 1; (b) reconstruction of the original signal from the wavelet
representation in Figure 15.12.

If §rp, 4, (x, y) is its companion wavelet, then we can construct three different two-
dimensional wavelets in addition to the above two-dimensional approximation
function as follows:

Vi sy (5. ¥) = 0(x — KW@y — k) (15.48)
Ut 00 0) = Y@x — k)e@y — k) (15.49)
ke, 1) = W(2x — kW (2y — k) (15.50)

Cron
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hy(k)
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FIGURE 15.14 Multiresolution reconstruction structure.
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The superscripts on the symbols s are indices only. 1[/;{\.‘,0,(,\', yh =123 are
all wavelets, since they satisfy the following condition:

” Venlep) drdy=0 forl=1273 (15.51)
-0

Let us start with the image f(x,y), i.e., j =0, and the scale 2 = 29 = 1. The
image can be expanded in stages. At each stage of the transform, the image is
decomposed into four quarter-size images, each of which is formed by inner
products of f(x,y) with one of the wavelet basic images, followed by down-
sampling operation in x and y by a factor of 2. For the first stage decomposition
(ie., j = —1), we have

L) = i = (S 07 = k)27 y — &) (15.52)

2 (x,y) is the first subimage giving the approximation coefficients at a coarse
resolution of 27!, The other three subimages are, respectively,

i =dM = () o7 s — kW R™y — k) (15.53)
) =dN = e g2 % — ke 'y — k) (15.54)
Loy =dle s = (@)@ x =k 'y = k) (15.55)

where 4, .. dH]L.,a_,ﬂ, and ¢"',  are the detail coefficients at a coarse
resolution of 27!

The two—dlmensional image function f(x, y) can then be expressed as the
sum of functions as shown below:

f(x,y)zz ZC—HL\A'\(P Lty T2 2 a'LHaAv Lk

ke hy
+kZ ;dHlkr/ﬂ IM+Z ZdHun lk.\lni (15.56)
where
le. o)
g = J J JCO_ 1 g (X, p) dx dy (15.57)
-0

Figure 15.15 shows one stage of the decomposition of an image. ctf Kk
A9 g 4 esys and @M can be computed with separable signal filters
along the two coordinate axes. The two-dimensional DWT can be viewed as a
one-dimensional DWT along the x and y axes,

Figure 15.16 shows the spectral distributions of the scaling function and
each of the wavelets in the frequency domain. They occupy different regions of
the two-dimensional spectral plane. The spectral bands that are labeled LL, LH,
HL, and HH correspond to the spectra of the two dimensional approximation

function and wavelets ¥/, ., (x. V), ¥, (%, ¥), and i iy(x, ¥). The symbols L and
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FIGURE 15.16 Spectral distribution of the scaling function ¢, ;, and the three
wavelets, V/;n ky(%, ¥), |//,J ay(X, ¥), and l//kx ky(%, ), in the frequency domain.

H refer to whether the processing filter is lowpass or highpass. The region labeled
LL represents the low-frequency contents in both x and y directions. It 1s the
spectral distribution of the scaling function. That labeled LH represents low-
frequency spectral contents in x and high-frequency contents in y direction. It is
the spectral distribution of the wavelet v ,'mky(x, y). That labeled HL represents
high spectral contents in x and low- frequency contents in y direction. It is the
spectral distribution of the wavelet l/l,a (x, v). The spectral distribution in the
region labeled HH is from the wavelet l,l/,a (%), high-frequency contents in
both x and y directions The approximation subimage, LL, can continue to
decompose, and lower-resolution approximation subimages and detail subimages
are obtained. Figures 15.17 and 15.18 show, respectively, the three-level wavelet
decomposition of the standard image “Bridge”, and “Lenna” with the center of
the spectral domain shifted.
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(b}

FIGURE 15.17 (a) The original image of the standard image “Bridge.” (b) The one-level
wavelet decomposition of the standard image “Bridge.” (c) The two-level wavelet
decomposition of the standard image “Bridge.” (d) The reconstructed image with the
IDWT.
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FIGURE 15.17 Continued
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FIGURE 15.18 (a) The original image of the standard image “Lenna.” (b) The wavelet
decomposition of the standard image “Lenna,” shown in (a).
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Exemplary Applications

Readers should now be aware that the two disciplines of pattern recognition and
image processing are very intimately related. Although they each have their own
applications, they frequently come together as “PRIR” with digital image
processing as data preprocessing for pattern recognition. This has been a
ramification of artificial intelligence (AI), but it is growing so fast that there
are lots of independent activities going on and there even are specific professional
societies (e.g., International Pattern Recognition Society and its subsidiary
national societies in countries all over the world).

The reason this discipline could grow so fast is strong support from
applications. PRIP can be applied to various areas to solve existing problems.
In turn, the various requirements posed during the process of resolving practical
problems motivate and speed up development of this discipline.

PRIP has a lot of military applications: ground-to-air surveillance in the
detection and identification of incoming planes; air-to-ground surveillance in
monitoring enemy troop deployment, reconnoitering enemy airfields, monitoring
additions or changes in the enemy’s surface and underground military installa-
tions; and coast and border surveillance.

In addition, PRIP has many civil applications. Some medical applications
are:

511
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Examination of cytological smears, to assist in the detection and on-time
treatment of breast cancer, cervical cancer, and so on

Computerized tomography to help locate the tumor inside the brain through
three-dimensional scanning

Interpretation of electrocardiograms (EKGs) and electroencephalograms
(EEGs)

Enhancement and transmission of chest x-ray negatives

Examples of industrial applications:

Automated inspection, sorting, and/or pickup of machine parts in produc-
tion lines

Automated warchouse, to help robots to pick up parts from shelves or bins

Automated inspection of printed circuit boards (PCBs) to locate broken
lines, short circuits between lines, soldering cavities, and so on

Automated pin soldering of PCBs under a microscope

Nondestructive testing using metallography while casting to detect blow
holes, deformations, and so on

Drug tablet inspection

Button inspection

Chocolate bar inspection

Examples of forensic applications:

Fingerprint identification
Face identification
Radar-timed speed monitoring

Examples of use of remote sensing images:

Railway line development

City planning

Pollution control

Forest fire monitoring and control, especially for hidden fires

Agricultural applications such as crop inventory and monitoring and
management over a wide agricultural area

Other applications:

Seismic wave analysis for earthquake prediction

Petroleum deposit exploration (artificial earthquakes)

Acquisition and interpretation of a geological picture for mineral ore
deposit

Weather forecasting

Archiving and retrieval of documents, including mixed text/graphics
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There is no way to discuss all these applications in this limited space. Only
a few are discussed in the following sections. Interested readers can refer to
related periodicals and proceedings for other applications.

16.1 DOCUMENT IMAGE ANALYSIS
16.1.1 Recognition and Description of Graphics

There is no doubt of the use of computers in archiving and retrieval of documents.
What remains would be how to store and retrieve them more effectively,
especially in the case of mixed text/graphics data. Two problems are invoived:
(1) effective separation of character strings from intermixed text/graphics
documents; and (2) graphics understanding and the generation of succinct
descriptions of them. In this section a generic graphics interpretation system
for the generation of a description of the contents of a paper-based line drawing is
described. Frequently, graphics in engineering documents are diversified to a vast
extent. But if we focus only on the shape primitives and their structural
relationships, they can be grouped into only a few categories:

Graphics consisting mainly of polygonal shapes

Graphics consisting mainly of curved shapes

Graphics consisting mainly of special or user-defined shapes
Graphics consisting mainly of higher-order curves and/or polylines
Combination of one or several of the above

In addition, these entities have various attributes associated with them. Examples
of such attributes are thickness of lines and filling details for graphical primitive.
Very frequently, these entities overlap with one another and obscure some of the
lines. Graphics are typically annotated with text strings.

In the system developed [Bow and Kasturi (1990), and Kasturi, Bow, et al.
(1990)), a mixed text/graphics document is first digitized at a resolution of 12
pixels per millimeter to generate a 2048 x 2048 pixel binary image. To obtain a
graphics description file of the highest possible level with minimum operator
interaction, the following operations are performed on this image: (1) separation
of text strings from graphics and (2) automated generation of a structural
description for the graphics.

Separation of Text Strings from Graphics

The algorithm described in this section [Fletcher and Kasturi (1988), Bow and
Kasturi (1990)] 1s used to separate text strings of various orientations, font styles,
and character sizes. This segmentation algorithm is based on grouping collinear
connected components of similar size and does not recognize individual char-
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acters. There are two principal steps in this algorithm: (1) connected component
generation and (2) collinear component grouping in the Hough domain. These
segmentation steps are described briefly in the following sections.

Connected component generation. The connected components in the
digitized image are isolated by raster-scanning the image and growing the
components as they are found. The algorithm keeps track of the top-, bottom-,
left-, and rightmost pixels corresponding to the smallest enclosing rectangle of
each component, and the percent of pixels within this rectangle that are of the
foreground type. The rectangles enclosing the components in Figure 16.1 are
shown in Figure 16.2. Note that each component of a text character is enclosed in
a separate rectangle except for characters that are connected to graphics (the
letters T and p inside the table). The connected component data are used by other
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FIGURE 16.1 Test image 1. (From Bow and Kasturi, 1990.)
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FIGURE 16.2 Connected components in test image 1. (From Bow and Kasturi, 1990.}

stages of the text segmentation algorithm, thereby minimizing the operations on
the large image array.

An area filter is designed to identify those components that are very large
compared to the average size of the connected components in the image, and to
group them into graphics, since in a mixed text/graphics image, such components
are probably appropriately so categorized. By obtaining a histogram of the
relative frequency of occurrence of components as a function of their area, an
area threshold, which broadly separates the larger graphics from the text
components, is chosen. Consequently, connected components, which are
enclosed by rectangles with a length-to-width ratio larger than 10 (e.g., long
horizontal or vertical straight lines), are marked as graphics instead of text
characters. With these filters the two large rectangles and the two thin rectangles
are removed from Figure 16.2 as graphics.

Collinear component grouping in the Hough domain. Let us define a text
string as a group of at least three characters which are collinear and satisfy certain
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proximity criteria. The collinear characters are then identified by applying the
Hough transform to the centroids of the connected components. In this imple-
mentation, the angular resolution 6 in the Hough domain is set at 1 degree,
whereas the spatial resolution p is set at 0.2, which is the average height of the
connected components, thus providing a threshold for the noncollinearity of the
components of the text. The Hough domain is scanned first only for horizontal
and vertical strings, then for all others. When a potential text string is identified in
the Hough domain, a cluster of cells centered around the primary cell is extracted.
This is done to ensure that all characters belonging to a text string are grouped
together.

To decrease the time spent in performing the Hough transform, a pyramidal
reduction of the resolution is used. In this case the reduction in resolution is 3 in p
and 2 in 8, producing an array that is at each level one-sixth the size of the
preceding level. The method of reducing the resolution is a maximum operator, so
that the maximum string length at the base is represented in the top level. There
are a total of five levels in this implementation, reducing the resolution by a total
factor of 6 = 1296. This means that scanning of the Hough domain is reduced
computationally by a factor of 1296, but the individual string extraction time will
be increased. This condition is almost always satisfied in a typical document.

After a collinear string is extracted from the Hough domain, it is checked
by an area filter, which is similar to the one discussed earlier, so that the ratio of
the largest to smallest component in the group is less than 5. This is necessary to
prevent large components, which do not belong to the string under consideration
(but having their centroids in line with the string) from biasing the thresholds,
such as intercharacter and interword gaps. The components are further analyzed
to group them into words and phrases using the following rules:

1. Intercharacter gap less than or equal to 4,
2. Interword gap less than or equal to 2.5 x 4,

Here A, is the local average height and is computed using the four components
that are on either side of each gap.

The algorithm described above classifies broken lines (e.g., dashed lines)
and repeated characters (e.g., a string of asterisks) as text strings since they satisfy
all the heuristics for text strings. It is desirable to label such components as
graphics. On the other hand, text strings in which some of the components are
connected to graphics are incorrectly segmented (e.g., underlined, words, in
which characters with descenders touch the underline). Thus the strings that are
identified are further processed to refine the segmentation [Fletcher and Kasturi
(1988)].

Three more operations are involved in this algorithm: (1) separation of solid
graphical components, (2) skeletonization and boundary tracking, and (3)
segmentation into straight-line curves. The data generated include coordinates
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of endpoints, line type (straight or curved, continuous or dashed), line source
(outline of solid object or core line of thin entity), and line thickness. For dashed
lines, the segment and gap lengths are also included. For curved lines, a second
file containing an ordered list of pixels using an eight-direction chain code is
created. These files are processed by the graphics recognition and description
algorithm described in the following section.

Automated Generation of a Structural Description for
the Graphics

Necessity in implementing heuristic concepts to the graphics understanding
for their succinct description. 'What comes so naturally to human segmentation
of an image into meaningful objects is an extremely computationally intensive
and ambiguous task for the computer. As a matter of fact, the human segmenta-
tion is an outcome of a very complicated process which we do not really realize.
What the computer thinks about a graphic is actually a 2048 x 2048 or
512 x 512 bitmap. If a computer is taught to search a shape, it will search out
all the closed shapes that might form from the given straightline or curved
segments. The number of complex polygons generated might count up to several
tenfold what they should be. Obviously, this does not lead to a succinct
description, but on the contrary, will complicate it. The computer should be
further taught to recognize the graphics more effectively and efficiently than
human segmentation does. Heuristic concepts should therefore be implanted in
the algorithm enable the system to understand the graphics exactly as a human
expert does. The system is so equipped that it can generate indispensable loops
(i.e., loops with minimum redundency). These loops will then serve as input to
the next-higher-level processor to generate a structural description of the
graphics.

Heuristic concepts will be introduced in two separate levels of processing.
Some will be introduced during the closed-loop searching process to constrain the
search to indispensable loops only. No doubt, this is done under the condition that
no information will be lost. Other heuristic concepts would be left to higher-level
processing, where decomposition on the complicated segmented images will be
conducted.

Automated generation of forms with minimum redundancy from graphics
consisting mainly of polygons and straight-line segments [Bow and El-Masri
(1987), Bow and Zhou (1988)]. Input data obtained from the preprocessing part
of the system are in the form of a group of line segments. For each line segment
we can establish two neighbor lists: the head neighbor list and the tail neighbor
list. Once these neighbor lists are built up, we no longer care about the length
varieties or the orientation of the line segments.
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Some definitions are helpful for the process. A line segment is designated
as a terminal line segment 7 if it does not have a neighbor at its head, tail, or
neither of them. If a line segment has one and only one neighbor at both its head
and tail, it is designated as a path line segment P. If a line segment has two or
more than two neighbors at either its head or its tail, it is designated as a branch
line segment B. Note that some of the line segments would chain-cluster into a
loop, while others would not. Let us designate those chain clusters that cannot
form closed loops as PATH-1 and these that would probably form a loop as
PATH-2. Both PATH-1 and PATH-2 are orderly sequences of line segments.
PATH-1 will be in string form, such as T, TB, TPB, TPPB, TPPPB, ..., and TT,
TPT, TPPT, TPPPT, and so on, while PATH-2 will come out as a segment string
with B’s at both ends, such as B, BB, BPB, BPPB, .. ., or a continual and closed
segment string of P’s, such as PPP, PPPP, ... (see Figure 16.3 for details).

Searching of PATH-2 can be started at any branch line segment as long as it
has not been grouped into previous PATH-2s. If all the branch line segments have
been included in PATH-2’s and there are still path line segments left untraced,
search for a new PATH-2 starting at any one of the path line segments. This will
result in a string form such as PPP, PPPP, .. ., indicating that they are isolating
forms.

A careful glance at the graphics shown in Figure 16.4 will show that an
enormous number of loops could be traced out from these line segments. Even
with this simple graphic, over 100 different polygons can be obtained. This would
definitely increase the complexity instead of helping to obtain a succinct graphic
description. In this sample graphic, 21 polygons (Figure 16.4b and c) are
sufficient to keep all the information. Our problem now becomes to design an
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FIGURE 16.3 Two types of chain clusters from line segments. (a) PATH-1 clusters; (b)
PATH-2 clusters. {From Bow and Zhou, 1988.)
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algorithm to generate these 21 polygons (no more and no less). Loops generated
can be classified into three categories: (1) self-loop (SELFLOP), (2) simple loop
(SIMLOP), and (3) complex loop (CMXLOP).

SELFLOP is a loop formed with a single PATH-2 sequence, PPP,
PPPP, ..., or BPB, BPPB, BPPPB,.... SIMLOP is defined here as a loop
composed of edges less than and up to six in number, with the hope that it would
come out to be a more or less regular form. CMXLOP is a loop composed of
more than six edges. In the graphic shown in Figure 16.4a, there are 10
SELFLOPs, 7 SIMLOPs, and over 100 CMXLOPs. A SIMLOP may be a
simple shape such as a triangle, rectangle, or rhombus, but that is not so for a
CMXLOP, which may come out as a barely described polygonal figure.

Automating the generation of their structural description.  As defined and
generated by this system, SIMLOPs can be nothing but such forms as triangles,
rectangles, trapezoids, rhombus, parallelograms, regular pentagens, regular
hexagons, and horizontal hexagons. Once these forms were recognized, they
{except the irregular ones) can be specified by only a few parameters, thus greatly
reducing storage and increasing ease of retrieval.

A CMXLOP is a barely described polygonal figure. However, in many
cases a CMXLOP can be ingeniously described by a human expert as a
combination of two or more primitive forms grouped together in an overlapped,
nested, intersected, perspective, subtractive, or additive mode. So some ideas can
be transplanted to the system from human perception and cognition. To explain
our approach, it may be helpful to use an example.

For the graphic shown in Figure 16.4a, the SIMLOPs and CMXLOPs
generated by our system are listed in parts (b), (c), and (d). The seven SIMLOPs
can be machine-recognized and stay where they are. The CMXLOP shown on (c)
consists of 15 edges and is obviously not a convex hull. Note also that the edges
sets [cd, de, ef], [gh, hi], and [jk, kI, Im] of this CMXLOP share edge with
SIMLOPs G, F, and £ in the form of segmented images.

If vertices ¢ and f, g and i, and j and m are connected together by cf, gi, and
jm, respectively, the CMXLOP abcde - - - kimno turns out to be a convex hull, and
the figure looks as a rectangle abno overlapped by three primitive shapes:
rectangle G, rhombus F, and another rectangle £ with portions of the rectangle
hidden. Similarly for the CMXLOP shown in Figure 16.4d, a convex hull can be
obtained by connecting c'f’, g’j/, m’p’, and ¢'t. The CMXLOP can then be
interpreted as a polygon a'b’k’'F'i/ overlapped by four rectangles E, D, C, and B.

After analysis by this system, the graphic shown on Figure 16.4a can then
be intepreted as composed of nine primitive forms, among which the rectangles 4
and G, rhombus F, and rectangles E and D are positioned in a top-down spatial
relationship. They are symmetrical with respect to the right edge bn of the
rectangle abno, with the other three edges no, oa, and ab forming a feedback
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loop. Rectangles C and B are in a spatial top-down relation and situated side by
side with rectangles £ and D, respectively. C and B are positioned such that they
are symmetrical with respect to the right vertical edge b'k’ of the polygon as a
branch loop.

For the same graphic there exists another interpretation which is as succinct
as the preceding one. That is, instead of interpreting it as overlapping of
primitives G, F, and E on the rectangle abno and E, D, C, and B on polygon
a'b'k'l'd’, we can break these two CMXLOPs into two sets of line segments [ab,
be, fg, ij, mn, no, oa] and [&'b', ', f'g, jk KT, I'm', p'q’, v, wa'], and use
them to link the seven primitive shapes together in the correct order. Which one
of the interpretations above we should follow will depend on the specific
subgraphic and its relation to other subgraphics. The decision making will be
left to a higher-level processing. This will, of course, challenge the system to
show its intelligence.

Take another graphic (Figure 16.5a) for interpretation., SIMLOPs and
CMXLOPs intelligently generated by our system are shown in Figure 16.5b
and c. Obviously, there is no need for CMXLOP #3 to exist. The reason is that
nearly all of the edges (except b'¢’) of this CMXLOP #3 are already included
either in the other three CMXLOPs or in some of the SIML.OPs, namely,

fe included in ab

e'd included in bc

af’ included in a”l"

ab’ included in a”b"”

d'c’ included in rectangle #0

This can be machine-checked without too much difficulty. For CMXLOP #1, six
of the 12 edges are included in SIMLOPs #M and #L, namely

SR 4 included in SIMLOP M
c'd’,d"e", &'f" included in SIMLOP L

For this CMXLOP #1 we have to weigh and see which method of interpretation is
more advantageous to our succinct description: Keep it in a convex hull shape, or
break it down into line segments? Keeping it as a convex hull (i.e., by connecting
i"I" and ¢”g") would lead to missing one line segment, f”g”. Furthermore, it
cannot provide us with new, meaningful information, since there is no such
reference pattern in our system.

Based on the facts listed above, there is not much benefit if we keep this
CMXLOP #1 for graphic interpretation. Instead, we can decompose this
CMXLOP #1 into polyline (f"g”, g"h”, h”i") and line segments (/"a”, a"b”,
and b"¢"), where &”b” will finally combine with other line segments to give a long
line segment, L.22. Similar arguments can be applied to CMXLOP #2 and #4.
CMXLOP #2 will be replaced by line segments {(ab, bc, fg, ki, la). CMXLOP #4



(44

Y
o2
[\

o

iz
. L3 16
() ] ” 51« g gcf #
us L20 L21 de—c'
124 L2 126 127 L28 129 [L30 L)) . J e

[ﬁ‘ L7 dpjo

1 0EE0 Popl e
o] el
] 0 ' .t

j (b) LU (c) POLY/ T\ h" g

FIGURE 16.5 Decomposition on complex loop. (a) Original graphic; (b) regular primitive forms generated by the system; (c) complex
forms generated by the system. (From Bow and El-Masri, 1987.)

o =l od

91 saydey)



Exemplary Applications 523

will be replaced by line segments (a”’b"”, b, f"'g"”, gk, K1, I"a™). The
results obtained from the original graphic after the decomposition procedure will
be 17 rectangles and one polygon linked together by 18 line segments in
appropriate spatial relationships which can be specified clearly. Note that some
of the line segments will be further combined to form long line segments by using
their collinearity property.

Ten different graphics of different degrees of complexity were used as
samples for the experiments. Figure 16.6a shows the input graphic with an
unknown misalignment angle. Figure 16.6b and c, respectively, show the
description generated for the graphic, and the graphic reconstructed from the
structural description. Figure 16.7 shows the results obtained on the other
graphics. Note that the complex loops generated by the system have finally
been broken down into segments. Scenes from computer vision on overlapping
objects have also been taken for experiments.

16.1.2 Logic Circuit Diagram Reader for VLSI-CAD
Data Input

Although CAD systems have come into wide use to speed up engineering design,
skillful work must still be done on drawing paper. In this section a logic circuit
diagram reader using a pattern recognition technique for the automatic input of
data into CAD system is discussed.

In a logic circuit diagram, many symbol patterns appear. The total number
of these patterns may be on the order of several hundreds (see Figure 16.8).
Nevertheless, some of them are very similar in morphology. If we analyze these
symbols from the morphological point of view, most of the logic symbols can be
grouped into two main categories. One consists of loop(s), such as triangles,
rectangles, diamonds, and user-defined symbols, while the other does not. Let us
designate symbols with loop(s) as loop symbols and the others as loop-free
symbols.

Although the set of symbols used in the drawing is predefined and also
drawn with a template, variations in their size, orientation and position exist. All
these complicate the solution to this problem. Okazaki et al. (1988) suggested a
two-stage recognition procedure for its solution: symbol segmentation and
symbol identification.

Symbol Segmentation

Symbol segmentation is the first task and a key stage in this approach, wherein
the legitimacy of a candidate loop is ascertained and the relevant region of the
diagram is delimited. In this process a minimum region sufficient for symbol
identification [called the minimum region for analysis (MRA)] is isolated from
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FIGURE 16.7 Generation of a description for a misaligned input graphic and reconstruc-
tion of the graphic from the descnption. (a) Input graphic (misaligned); (b) description
generated for the graphic shown on (a); (c) reconstructed graphic from the description.

(From Bow and El-Masri, 1987.)
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FIGURE 16.8 Logic circuit diagram.
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FIGURE 16.9 Concepts used in calculation of MRA. (From Okazaki et al., 1988,)

the drawing for later identification. Of course, this region could have four
orientations and their mirror images. Logic symbols conventionally appearing
in drawings can be grouped into a certain number of intermediate categories, each
of which is represented by a characteristic window. This is the minimum region
that can include all the components of the symbols within that intermediate
category. The step-by-step determination of the characteristic window is shown in
Figure 16.9 and is self-explanatory. Several features need to be extracted from the
candidate loop: loop area, number of occurrences of each of the four mask
patterns which approximate the length of the corresponding oblique line (see
Figure 16.10), and the x and y lengths of the rectangle windows, which just fit the
candidate.

Symbol Identification

After the MRA has been isolated, identifying the exact symbol type will proceed.
Template matching is a simple way to perform this task. Templates are prepared
only for the individual primitive loop patterns. Two groups of primitive templates
are suggested, one for radical symbols, the other for auxiliary symbols, as shown

in Figure 16.11. Take a simple NOR gate, Do, for illustration; this will be

matched by the templates “OR” and “0” as well as with some additional
information about their spatial relationships. The first template to be matched
depends on the intermediate category. Once this template matching is successful
for a radical symbol, the number of auxiliary symbols to be matched and their
location are limited. Further matching processing can be guided, thus simplifying
the entire process.
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FIGURE 16.10 Four mask patterns. (From Okazaki et al., 1988,)

The entire operation of the logic circuit diagram reader can thus be
described by the recognition flow diagram shown in Figure 16.12. The loop-
free symbol and rectangle recognition can be done according to the method
described in Section 16.1. After the primitive elements (i.e., symbols, character
strings, functional rectangles, and lines) are recognized by the reader, they can be
converted into appropriate formats as CAD data input.

O D D
> D
O O

Set of Symbols

i

Set - 1 of Set - 2 of
Primitive Templates Primitive Templates
(Auxiliary Symbols) (Radical Symbols)

FIGURE 16.11 Primitive template set for matching. (From Okazaki et al., 1988.)
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FIGURE 16.12 Recognition flow in the logic circuit diagram reader.

16.2 INDUSTRIAL INSPECTION

16.2.1 Automated Detection and Identification of
Scratches and Cracks on a Crystal Blank

Automation is no longer imaginary; it now plays an important role in industry. A
lot of successful experience has been obtained in modern factories producing
steel, automobiles, and the like, where direct human intervention is no longer
necessary. In many cases computerized inspection coordinates very well with



530 Chapter 16

robotics and has become an important link in the integrated manufactured system.
However, we should be aware that there is still a lot of work for human beings,
and although it may not be as heavy as that noted above, it is even more tiresome
to the human operators. Inspection of defects in crystal blanks in the crystal
manufacturing industry is a very good example.

Crystal resonators have been used widely in many applications, from
satellite communication to timekeeping in daily life. But unfortunately, due to
the inherent brittleness of crystals when thin, quite a number of samples are
rejected because of imperfections resulting from grinding, cleaning, and welding,
This problem becomes much more serious when attempts are made to raise
resonator frequency to 45 MHz or higher.

To assure the quality, to maintain a high productivity rate, to lower the cost
per unit, and to achieve even higher resonant frequencies, conscientious pre-
inspection of crystal blanks to screen out the imperfect ones will be a very
important procedure. This inspection task is still in a very primitive stage and is
carried out by a human operator. To sort out the imperfections of submils in width
and a few mils in length from a 0.2756-in.-diameter crystal blank with a speed of
3000 pieces in an 8-hour shift (or less than 10 seconds per piece of crystal blank)
under strong illumination would be a terrible job. Misclassification due to tired
vision or lack of attention due to continuous exposure to strong illumination is
understandable and unavoidable. Due to the fast development of image proces-
sing, such monotonous, tiresome work can be taken over by an image processing
and pattern recognition system from the human operators, leaving them to
perform higher-level jobs {e.g., statistical analysis).

Automated inspection of crystal blanks is very challenging because it
competes with human operators’ inspection speed, and their discriminating
capability as to the existence of defects and their categories. That is, it is required
that an automated inspection system (AIS) be able to do whatever a human
operator can do. Not only that—it is also required that an automated inspection
system be able to detect and categorize defects that are not visible to the naked
eye even with a magnifier. At present, this situation may not be deemed to be very
serfous, but it will definitely be so when working toward 45 MHz or an even
higher natural resonant frequency—when the crystal blank will be much thinner,
and consequently the tolerable width of cracks and scratches will be much
smaller.

Detection and Identification of Scratches and Cracks
on Unpolished Crystal Blanks

Some investigations on the detection and identification of scratches and cracks on
unpolished crystal blanks have been carried out [Bow, Chen, and Newell (1989)].
Figure 16.13 shows a digitized magnified image (x65) of a portion of an
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FIGURE 16.13 Magnified digitized image (x65) of an unpolished crystal with a tiny
crack and an edge feature. (From Bow et al.,, 1989.)

unpolished crystal with a tiny crack 0.002 in. wide and 0.005 in. long (pointed to
by an arrow in the figure). This is the typical image from which we are to detect
cracks and scratches. Undoubtedly, unpolished quartz blanks are translucent and
textural in nature. The black region in the picture (called an edge feature) looks
very bad, but it is not a problem of concern to us since it does not cause trouble to
the crystal. The detrimental part is the very thin line located inside the black
region and extending upward, shown by the letter “C.” This is what we call a
crack. This crack is so thin that it can be seen with the naked eye under a
magnifier only when special illumination set at a proper angle is used to make the
reflection of light match the observer’ line of sight.

Due to the importance and ubiquity of such image data, lots of work have
been done to look for models and approaches to their representation and
processing [Haralick (1978)]. These approaches are successful in an analysis of
multispectral scanner images obtained from aircraft or satellite platforms and
microscopic images of cell culture or tissue samples. However, in the detection of
surface imperfections, we are confronted with problems that combine texture
analysis and image segmentation. The imperfections in quartz blanks are usually
very thin. Practically, they break the homogeneity of the textural pattern locally
into two or more textural regions. For this reason the textural regions so formed
are very similar in most aspects. This makes it extremely difficult to segment
these textural regions from one another, but an approach has been proposed [Bow,
Chen (1989)]. Difficulties in processing this image come from (1) very small
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differences between the gray levels of the objects (cracks, scratches, etc., in this
case) we are looking for and those of portions of the pixels in the textural
background (the difference is as small as three to four gray levels based on 256-
gray-level representations with 0 for complete darkness and 255 for complete
brightness), and (2) very small differences among the textural structures on the
statistical parameters that are to be differentiated.

There is also another feature in our problem-—that no a priori information is
available regarding partitioning of the component textural structures. As can be
seen from Figure 16.13, there are four textural structures on the image:

1. Image background

2. Crystal textural background
3. Crack-affected region

4. Edge features

Among these four textural structures, the most difficult task in processing
will be segmentation between textures 2 and 3. The approach suggested is first to
separate the image background from the rest of the image. Next, apply to the
remaining data the three-step procedure suggested:

1. Segment the edge feature plus the crack-affected region from the
crystal background.

2. Segment the crack-affected region from the crystal textural back-
ground.

3. Delineate the boundary between the edge feature and the crack-affected
region.

A histogram of the image shown in Figure 16.14 shows that the pixels
within the crack region are completely mixed up with those within the crystal
textural background. Their gray levels are so close that they might not be
differentiated from each other if a simple gray-level thresholding method were
used. Our approach then is first to segment the edge feature plus the crack-
affected region from the crystal background. Unavoidably, artifact noise will be
introduced, as shown in Figure 16.15. Morphological eroston, dilation, and coarse
noise elimination follow, and the image shown in Figure 16.16 results.

Superimposing the original image on the image shown in Figure 16.16
yields the image shown in Figure 16.17, from which we can see that the four
textural structures—image background, crystal textual background, crack-
affected region, and edge feature—are clearly separated. From Figure 16.17 we
can sec a very thin line (crack) extending upward between the edge feature and
the crack-affected region. This is the crack. Figure 16.18 is the image shown in
Figure 16.17 but with the textural background marked by a gray level other than
255. In this figure (Figure 16.18) the edge feature and the (crack-affected region
appear with different gray levels. The edge feature and crack on the quartz blank
are eventually located, which is shown on Figure 16.19, and identified as a crack
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FIGURE 16.14 Histogram of the sample image shown in Figure 16.13. (From Bow et al.,

1989.)

FIGURE 16.15 Image obtained after the edge feature plus the crack-affected region have
been segmented from the crystal background. (From Bow et al., 1989.)
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FIGURE 16.16 Image obtained after morphological processing and coarse noise
elimination on the image shown in Figure 16.15. (From Bow et al., 1989.)

by the computer. This approach has been used on many other crystal images. In
each figure, the original magnified digitized image is shown in (a), and the
processed image is shown in (b), where the imperfection was delineated. “F”
indicates an imperfection; “P” indicates a good product, and “b” and *t”
represent the image background and crystal texture, respectively.

Detection and ldentification of Cracks and Scratches

on a Polished Crystal Blank

Defect model on a polished crystal blank. There will be no difficulty in
the detection of cracks and scratches of discernible size nor in their screening,

FIGURE 16.17 Image showing the four regions after segmentation. (a) Image back-
ground; (b) crystal textual background; (c) crack-affected region; (d) edge feature. (From
Bow et al., 1989.)
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FIGURE 16.18 The image shown m Figure 16.17 but with the textural background
marked with a gray level other than 255. (From Bow et al., 1989.)

since they will obviously be rejected despite which category, crack or scratch,
they belong to. However, there will be differences in dealing with extraordinarily
fine defects. Cracks, no matter how fine they are or where they are located, are
always unacceptable. However, scratches of the same size may be accepted.
Sometimes, we are inclined to keep them to avoid wasting matenal or labor time.
We are not concerned, for example, about tiny scratches that are close to the edge.
But for a scratch located somewhere in the center of a blank, whether or not it is
accepted depends on its depth. How to decide whether it is acceptable or
unacceptable is complicated. However, on the eve of fifth-generation computers,
many empirical judgments are involved in the quantification criterion.

FIGURE 16.19 Locating and identifying the defect on a crystal. “C” represents a crack;
“b™ and “t” represent the image background and crystal textural background, respectively.
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As mentioned above, what we are interested in is not the larger cracks
and/or scratches, since they will obviously be rejected and will easily be detected
and screened, especially when a computer is used as an aid. Our interest focuses
on effective methods for detecting and categorizing extraordinarily fine defects—
more specifically, into which category such defects fall. That is, an objective
criterion should be established for their classification so that they can be handled
properly. This should contribute positively to the productivity rate and quality
assurance in quartz crystal manufacture.

It 1s therefore necessary to establish a criterion to define fine scratches and
cracks precisely based on their morphology, and to develop a digital image
processing and pattern recognition algorithm. Resolving such a difficult task,
previously thought achievable only by an human operator, will make it possible
for the resonator to advance toward even higher frequencies. From the data
collected from a large number of crystal samples known to contain cracks and/or
scratches, two phenomena were observed. Based on the observations, two
approaches have been suggested to differentiate the two inherently different
defects based on their magnifier images.

In deciding what approach should be used, several considerations were
followed: that innovation in the mechanical equipment should be kept to a
minimum, and that the computerized system should be made as compact, and
thus as inexpensive, as possible. It follows that:

1. Feature measurements should be kept few in number and should be
direct (i.e., directly obtainable from the picture element).

2. The measure should attempt to determine the inherent characteristics in
crystal and should not require training samples.

3. The algorithm should be fast enough to compete with a human
operator.

4. The system should be able to detect submil defects and to differentiate
scratches from cracks. The detectability should be comparable to that
of a highly experienced operator when he or she is functioning at the
highest level.

One of the approaches proposed by [Bow, Chen, and Chen (1991)] is based
on optical observation. Figure 16.20a and b show microscopic images of a crystal
blank with scratch defects obtained with light incident from the scratch side and
other side of the crystal blank, respectively. Figure 16.21 is the same as Figure
16.20 but for a crystal blank with a crack defect. Comparing Figure 16.21a with
16.21b shows that the widths and cross-sectional areas of the crack on the images
taken from either side are the same.

By contrast, from Figure 16.20 it is clear that the width of the scratch is
wider when observed with light incident from the scratch side. This is shown in
Figure 16.22, where the refraction introduced by the crystal material is included.



(a) (b}

FIGURE 16.20 Microscopic image of a crystal blank with a scratch defect. (a) Image
taken with light incident from the scratch side; (b) image taken with light incident from the
other side of the crystal blank. (From Bow et al., 1990.)
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(@ b)

FIGURE 16.21 Microscopic image of a crystal blank with a crack defect. (a) Image
taken with light incident from the crack side; (b) image taken with light incident from the
other side of the crystal blank.

In Figure 16.22, the apparent widths of the scratch observed when the illumina-
tion is from the scratch side or from the opposite side are shown. It is clear that
the differences in apparent widths come primarily from refraction of the crystal.
This is an effective method to use to differentiate a scratch or a crack. It can also
be used to compute the depth of the scratch indirectly from the thickness of the
crystal, index of refraction of the crystal, which is 1.458, and the apparent widths
of the scratch measured from the images when viewed from the two different

= &

FIGURE 16.22 Apparent width of the scratch as observed from the scratch side or from
the opposite side. (From Bow et al., 1990.)
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sides. The only argument against this approach is that more work will be involved
in the design of a mechanism for obtaining these two magnified images with light
lluminated from one side in one case and from the other side in the other case.

Due to the negative effect of the first approach, as mentioned above,
another approach has been proposed in which illumination comes from only one
side. Of course, we have no idea at all as to which side the scratch actually lies on,
so all we try to do is to keep away from the variations introduced by this factor.
We concentrate on the morphology of the scratch or crack. From a large number
of enlarged images of quartz samples with defects, we have found that scratches
differ in morphology from cracks. Since cracks run all the way through a crystal,
a solid boundary will appear in the image, whereas scratches which are superficial
and usually caused by nonuniform stress, show on magnified image as inter-
mittently connected pits (some of them light, some of them heavy). Nevertheless,
the pits lie on the same line or, in general, lie on the same curve. This valuable
information provides us with a basis to establish a criterion for differentiating a
scratch from a crack: If the defect detected appears in the form of an obviously
clear-cut continuous line (or broken lines), it is identified as a crack. If it appears
as intermittently line-shaped (or in general, curve-shaped) dot clusters, it is a
scratch.

Algorithm to identify extraordinarily fine cracks and scratches on a
polished crystal blank: Laplacian operation plus zero crossing. Several
algorithms have been developed regarding this problem, one of which was
found to be very effective. As mentioned earlier, the scratches and cracks we
are looking for are so fine that the intensity change was not as sharp as we
expected. For this reason, instead of using a gradient-based method, we used the
local extremum of f/(x) as the criterion to detect the boundary of the defects. That
is, the method of Laplace plus zero crossing was adopted in our approach.
Because this operation is sensitive to noise, reduction of the resulting sizable

artifact noise is desirable prior to edge detection. The laplacian operator is given
by

Pfx,y) | Fflx.
Vi, y) = fley) J;(;Zy)

x?
and its discrete implementation can be reduced to the form of a convolution
operation as

(16.1)

sz(x’ y) =f..tx(n] , n2) +f)‘zy(nl’ n2)
=f(n +1,m) +f(ng =1, m)+f(n.my+ 1)
+ f(ny, ny — 1) —4f(n), ny) (16.2)
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where f,.(n;.n,) and £, (n,.n,) represent, respectively, the second derivatives
with respect to x and y and f(ny. m), f(ny + 1, ma), f(ny — Long), flnyony + 1),
and f(n,, n, — 1) are the gray-level intensities of the pixel concerned and its four
neighors. Figures 16.23 and 16.24 show the microscopic images of two polished
crystal blanks, one with a scratch and the other with a crack. Figures 16.23b and
16.24b show the images obtained after laplacian and zero-crossing processing,
respectively.

Due to the extremely slight difference in gray level in the defect area on the
polished blank, lots of artifact noise after processing is unavoidable. Elimination
of this artifact noise will be the next important step.

The laplacian-based methods discussed above frequently generate many
undesirable “false” edge elements, especially when the local variance is small.
Consider a special case where a uniform background region is assumed: that is,
f(n,.n,) is constant over that region. Consequently, sz (n,.n,) equals zero and
no edges will be detected. Any small perturbation of f(n,. n;) is likely to generate
false edge elements. The method selected to remove these false edge elements is
to set up a threshold such that the local variance at the point should be sufficiently
large. See Figure 16.25 for a schematic diagram of the process. The local variance
a}(n,, n) at the pixel (n,. n,) can be estimated by

, 1 m-+M ns+M ]7
ar(ny.ny) = ———— f(K, Ky) — m(K,. Ky}
7. n2) M + 1)° K,z,Xz,:—M KF;:_M[ b T
(16.3)
where
1 n+M n.+M
mp(ny my) =-——s M Y. [l k) (16.4)

(2M+ 1) Ky=m—-M K.=n,—-M

with M typically chosen around 2. Since oy Z(n, . n,) is compared with a threshold,
the scaling factor 1/(2M + l) in (16.3) can be removed from the expression. In
addition, computation of the local variance 0', needs to be done only on the pixels
{n,.n,), the Laplacian of which cross zero. Figures 16.23c and 16.24c show the
results after the application of local variance thresholding of the two images.

After conducting the processing mentioned in the preceding two sections,
defects in a crystal blank are detected. Basing the detection on the inherent
characteristics of cracks (that they run all the way through the crystal cross
section), it is not too difficult to sort out the cracks. But for scratches, one more
processing step should be done to make sure of their existence. We have to
ascertain all the discrete dots or dot clusters lying on the same straight line or
lying on the same arc with a relatively large radius of curvature. Modified Hough
transform is used for this purpose. The results are shown in Figure 16.23d, where
the existing scratch is delineated with its category identified.
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FIGURE 16.23 Detection and identification of a scratch on a polished crystal blank. (a) Microscopic image of a
crystal blank with a scratch; (b) after processed by the approach of Laplace plus zero crossing; (¢) after elimination

of artifact noise: (d) delincation of the existing defect with its category identified. (From Bow and Chen, 1990.)
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FIGURE 16.24 Detection and identification of a crack on a polished crystal blank. (a) Microscopic image of a
crystal blank with a crack; (b) after processed by the approach of Laplace plus zero crossing; (c) after elimination
of artifact noise; (d) delineation of the existing defect with its category identified. (From Bow and Chen, 1990.)
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FIGURE 16.25 Laplacian-based edge detection taking the local variance into con-
sideration.

16.2.2 Automatic Inspection of Industrial Parts with
X-rays

In this section an example using x-ray images for the automatic detection of flaws
in cast aluminum wheels is given. Flaws such as cavities due to gas bubbles or
shrink holes down to a size of 1 mm are to be detected for quality assurance.
Three positions in a wheel, one for the hub, one for the spokes, and one for the
road wheel, are to be checked. The automatic x-ray inspection system (see Figure
16.26) consists of three principal parts: (1) a precision object-handling mechan-
ism, (2) an x-ray tube and image-data acquisition system, and (3) an image
processing system. The image is 512 x 512 pixels in size.

First, we have to have some a priori information about the flaws. Voids
frequently appear in the cast aluminum wheels. In x-ray images, voids show up as
bright regions with respect to their neighborhood. The majority of flaws in
aluminum casting look like isolated, roundish bubbles, which frequently are
grouped together in clusters. When a void exists, the thickness of the object is
locally reduced, and consequently, the attenuation of the x-ray is smaller and
follows the exponential law

dS(x) = Uz (x)Sy exp(— e (x)x) dx (16.5)

where S(x) is the transmitted intensity, which is a function of the thickness x, and
S, is the initial intensity, and . is the effective attenuation coefficient. This
characteristic makes it difficult to detect flaws in regions where thick material
must be penetrated. Because of the quantum nature of radiation, x-ray imaging is
inherently noisy, giving rise to a signal-dependent noise component in the x-ray
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FIGURE 16.26 Schematic diagram of an automated x-ray inspection system for the
detection of flaws in an aluminum casting.

intensity. Hence averaging over several frames is performed before the segmenta-
tion process.

If we select some local features that not only characterize the pixels
themselves, but include local contextual information, we can assume that the
image pixels of a segment form a cluster in the feature space. In this sense the
segmentation turns out to be a pixel classification problem. Let us formulate a
discriminant function d,(i,), k =1,2,.... K, such that if

dG.j)>t ij=12..,N (16.6)

then
P(i.j) € wy k=1,2,...,K

with w, denoting class k. For the detection of cavities in aluminum castings
discussed here, selection of these discriminant features has to be tailored to the
problem at hand. The effectiveness of each feature should be evaluated to
determine whether it should be included in the segmentation subsystem.
Features from linear filtering operations after enhancement of the signal for
flaws while suppressing regular features of the projection image can be good
candidates. Features from nonlinear filtering operations (¢.g., median filters) can
also be used. We can also define a local model to characterize the gray-level
variations of the flaws and use the parameters of the model as features. After the
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(a) (b)

FIGURE 16.27 (a) Original image of a wheel; (b) image filtered with DOG (difference
of gaussians) mask. (From Boemner and Stretcker, 1988.)

features are selected, we can formulate a polynomial classifier for the flaw
detection problem as follows:

di(i,)) = ayg + ayy LD + ap [, 0) + -+ - + @ [0 (0, ) (16.7)
where
dy(i, j) = discriminant functions (features) for class & at location P(i, j)
g=1,2...., K
1 if P(i, ) € wy
dy(i,)) =
Kb =10 oterwise
J(i. j) = mth basis feature at location P(i, j) - N S M
g, = coefficients in the disciminant functions di (i, j)
Km=1,2,...4 K:m=1,2,..., M

The parameters ay, a4, . . . , @, can be determined by means of a training set of
pixels which are known to belong to category ;. Figures 16.27 and 16.28 show

(a) (b}

FIGURE 16.28 (a) Original image (x-ray projection of the region around the hub);
(b) image filtered with DOG mask. (From Boemer et al., 1988.)
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some results obtained with the algorithm described for flaw detection through
x-ray imaging of an aluminum cast wheel and hub.

16.3 REMOTE SENSING APPLICATIONS

16.3.1 Autonomous Control of Image Sensor for
Optimal Acquisition of Ground Information
for Dynamic Analysis

Through constant improvements over the past 30 years, use of an image sensor
has been successful in the detection and conversion of low-light-level signals.
Nevertheless, human users from various branches of science and technology look
forward to having an intelligent sensor that can adjust itself to optimal working
conditions. The information base on which such an adjustment is made will be
that of previous image segments acquired.

In this section we discuss a very specific problem, optimal acquisition of
ground information for dynamic analysis. However, it will not be difficult to see
that many problems similar to this (e.g., on-board data preediting) will also be
realizable. We focus on an algorithm that will permit us to greatly increase the
scanning range of a stripmap acquisition system without modifying its existing
structure. This problem originates from the following facts. First, it is agreed that
it is very effective and also very beneficial and favorable to acquire ground
information from a satellite for either military or civilian purposes. However, due
to the fixed orbit of the satellite and the fixed mode of sensor scanning, the way 1n
which the satellite acquires ground information is in the form of a swath, as
shown in Figures 16.29 and 16.30. It is known that two consecutive swaths of
information scanned are not contiguous geographically. In addition, two geogra-
phically contiguous swaths are scanned at times that differ by several days. Very
frequently, the part of the target area of greatest interest falls either to the left or
right outside the current swath. Postflight matching of two or three swaths is thus
unavoidable for target interpretation, and therefore on-line processing will not be
possible. This will be all right (very inefficient, though), when dealing only with a
static target, but the situation will become very serious if the information sought
is for the dynamic analysis of strategic military deployment, for example. Even
when monitoring a slowly changing flood, information obtained in this way
would be of little use.

A desire has thus arisen to enlarge the viewing range of the scanner so that
we can acquire in a single flight all the ground information of interest now located
across two or three swaths. This would not only permit on-time acquisition and
on-line processing of the relevant time-varying scene information, but would save
a lot of postflight ground processing.
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FIGURE 16.29 Mode of data acquisition by stripmap scanner. (From Bow, 1986.)
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FIGURE 16.30 Orbit of LANDSAT D. (From Bow, 1986.)
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The range of scanning of a stripmap sensor is highly limited by the
instrument design. In the author’s opinion, implementing the sensor with artificial
intelligence (AI) will be a prospective solution to improving the overall perfor-
mance of the sensor system. Based on the on-line processing of image segment
data acquired from previous scans, the viewing angle of the sensor 18 to be
adjusted automatically to track the target without changing the mainframe. This is
to simulate the tracking action of the human eyeball and to enlarge the sensing
scanning range. According to Bow (1986) and Bow, Yu, and Zhou (1986), the
scanning range can be enlarged to two to three times that of the target’s design
value.

Autonomous eyeball-like tracking works on the traditional Chinese princi-
ple that if you want to get hold of something, you have to sacrifice something
else. In so doing, you will obtain as much useful information as possible. What
the useful information means depends on the problem being studied. The system
discussed here will be something like that shown on Figure 16.31. Such an Al-
implemented range-enlargement sensing system should be able to grab and
recognize the object of interest, predict and track its positional change, and
control the viewing angle of the sensor ahead of time. Association of the pattern
recognition technique with the spectral characteristics of objects forms the kernel
of this intelligent system. Interested objects can be detected 1n the spectral band
specified. Tracking on the target can then be implemented by successively
positioning the sensor at the center of the centroid C,.

Four sets of measurements can be obtained at a certain interval of time:

SN, = MSN, + ESN,

ML, = MML, + EML,

LM, = MLM, + ELM,

RM, = MRM, +ERM;, i=0,1,....N —1

(16.8)

where

SN, = number of target pixels obtained during the ith scan
ML, = centroid of the target area

_ v Jo)
7 SNI

1 target

and

5(/) = {

LM; = location of the leftmost pixel of the target area of scan i

RM; = location of the rightmost pixel of the target area of scan i

0 otherwise
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81VS

91 saydey)



Exemplary Applications 549

MSN,, MML,;, MLM,, and MRM,; are referred to as slowly varying components,
while ESN;, EML,;, and ELM;, ERM,; are referred to as their random disturbance
with zero means. Equation (16.8) can be generalized as

fi=m;+e, (16.10)

where m; represents a varying trend signifying that the target area is going to
expand, contract, or remain unchanged. It also shows whether the target area is
expected to shift leftward or rightward. e, is the disturbance of f;, from which we
can differentiate whether it is a random disturbance or spots of comparative
significance.

{m.} can be approximated by inference with g(¢) = Zj abt), j=
1,2, ..., K, to match { f;}; that is,

m; = g({;

g.( : . (16.11)
etz.fi_g(ti) i=0,12...,.N—-1

and K < N.

If we let X, = b;(z,), where i =0,1,2,...,N—1land;j=1,2,...,K, this
turns out to be a simple model for linear inference. In matrix form,

F=XA+FE (16.12)
and
a Jo €
a N 2]
A= F = E =
ag Sv— €y
(16.13)
Xo) Xop -- Xok
X Xk
X =
Xyo1a e Xyoik

A can be evaluated by

3
5;(F—XA)T(F—X4)=O ji=12,...K (16.14)
J

Taking into consideration the property of orthogonality, we obtain

A=XTX)"'XTF = XTF (16.15)
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and the estimated value of MF = (mg, m,.....my_,)" is then
MF = XA=XX"F (16.16)

Inference of the target area variation (e.g., the evaluation of {LM,} and
{RM;} when i > N — 1) can be approximated by

MLM, = MLM,_, + GLM - (P = N + 1)

16.17
MRM, = MRM,_, + GRM - (P — N + 1) Gl

where GLM and GRM are the rate of change of {MLM;} and {MRM,},
respectively, at i =N — 1. As can be seen from the expressions above, the
larger the P, the less accurate the approximation will be; and therefore P should
be restricted to a certain value. The approximation is acceptable if both GLM and
GRM remain greater (or less) than zero during the interval (N — 1, P). The range
within which both GLM and GRM remain greater (or less) than zero is

P—N-}-Is% (16.18)
or
P< ¥_| (16.19)

A simulation experiment has been conducted to evaluate the realizability of
this approach. Thematic mapper (TM) data obtained from LANDSAT D on the
Susquehanna River in the state of Pennsylvania and on the Yangtze River (the
longest river in China) were taken for the experiment. Figures 16.32a and 16.33a

(a) ch ()

FIGURE 16.32 Simulation experiment and results on Susquehanna River. (From Bow
et al., 1986.)
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i€}

FIGURE 16.33 Simulation experiment and results on Yangtze River. (From Bow et al.,
1986.)

show the images, which are at least two times wider than the scanner view.
Figures 16.32b and 16.33b show the changes in the scanner view for the optimal
acquisition of useful information (tracking on the river). Figures 16.32¢ and
16.33¢ show the stored data for later image restoration. From these figures we can
see that in a single flight we could acquire ground information across as wide an
arca as three swaths.

164 VISION USED FOR CONTROL

164.1 Traffic Flow Measuring Using an Image
Processing Technique

Another example of the image processing application is described here, use of the
image processing technique to measure road traffic flow so as to maintain a
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smooth flow and safe driving conditions. This kind of measurement has
conventionally been done using ultrasonic or magnetic sensors installed at
various locations. However, the accuracy achieved on parameters such as vehicle
volume, average vehicle speed, and so on, is relatively low. By using an image
processing technique we can perform the job directly from road images over a
large area of road, by using a sequence of images, thus improving the accuracy of
the measurements as well as the estimation of some useful parameters.

When using an image processing technique, problems such as the effects of
vehicle shadows and the occurrence of a traffic jam at dusk would exist. However,
the system discussed here will take care of them. Two steps will be involved in the
image processing: (1) to extract vehicle candidates from the road image and
check whether or not they are vehicles, taking into consideration the occurrence
of shadows and changes in brightness, particularly at dusk; and (2) to measure the
traffic flow parameters at high speed.

To extract a vehicle from the image, the following method involving
background subtracting with spatial differentiation is adopted. Figure 16.34
shows a schematic diagram of the processing system together with photographs.

Figure 16.34a, b, and ¢ shows the input image, background image, and
subtracted image | /' — g, respectively. Figure 16.34d shows the spatially dif-
ferentiated image of Figure 16.34c. Figure 16.34e and f shows, respectively, the
extracted image obtained from the differentiated images and that obtained directly
from the subtracted image. It can be seen in Figure 16.34¢ that objects (a), (b),
and (d) in Figure 16.34¢ are deleted from the processed image as candidates; only
object (¢) is extracted as a vehicle. Thus the adverse effect of vehicle shadows has
been successfully eliminated. By contrast, in Figure 16.34f, objects (e), (f), and
(h), which represent parts of vehicle shadows, would have been extracted as
candidates for vehicles, and consequently, incorrect judgments would result.

For high-speed processing the image input, background subtraction, spatial
differentiation, and binarization operations are pipelined. Other measurements,
such as the average speed of vehicles and their spatial occupancy can be made
similarly. It was reported by Takatoo (1989) that it was possible to track a vehicle
running at 150 km/h (roughly 93 mph).

164.2 Autonomous Navigation System for Robotic
Vehicle Road Following

To navigate adequately through its environment, an autonomous vehicle must
plan its actions, perceive its surroundings, execute its plans, and adapt to the
environment. The integrated navigation system consists of three parts: (1)
hardware components, such as vehicle, sensors, and computer hardware; (2) a
vision subsystem, composed of video data processing and range data processing;
and (3) a reasoning subsystem. This reasoning subsystem is actually an executive
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FIGURE 16.34 Vehicle extraction using background subtraction and spatial differentia-
tion. (From Takatoo et al., 1989.)
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controller, coordinating the other subsystems to accomplish the goal specified by
the script. No doubt, a knowledge base is part of this reasoning subsystem.
However, vision is a very important input resource for reasoning. These two
subsystems are intimately tied together. The vision subsystem supplies a
description of the observed road to the reasoning subsystem, while reasoning
subsystem passes the position update message back and at the same time provides
visual cues to the visual subsystem.

The primary vision (or perception) task is to provide a description of the
world. This information should be rich enough to facilitate road following,
obstacle avoidance, landmark recognition, and cross-country navigation. There is
such as strategic computing program in the Defense Advanced Research Projects
Agency (DARPA). For this project, several industrial laboratories and universities
have developed prototype systems equipped with reasoning and perception
capability. Some of the approaches used in road following, especially in the
vision subsystem, are reviewed in this section.

The road-following algorithms that have been developed can be summar-
ized in the following steps: visual information acquisition, segmentation of
road/nonroad regions, extraction of road boundaries, and building a scene
model. The sensor system includes a color camera for road following, a sonic
image sensor for obstacle avoidance, an infrared sensor for target detection, and a
laser range scanner for range determination.

Segmentation of ROAD /NOROAD Region

Due to the wide variation in the spectral characteristics of objects, one spectral
band road image does not contain enough information for classification of the two
main classes, ROAD and NOROAD. Comparatively, the blue color band image
usually possesses better discriminatory power to extract ROAD segments,
especially for a gravel road. However, in this application, a red-green-blue
color image is used to achieve better performance. Kuan et al. (1988) showed
that the optimal color transformation for a typical gravel road image is

Y =0.175R — 0.030G + 0.795B

where R, G, and B are, respectively, the red, green, and blue component image
samples of the scene, and Y is the optimal composite image constructed for gravel
road identification. In general, ¥ can be expressed as

Y= WIR + W2G +W3B
and the discriminatory power J(wy, w,, w3) of a transformation w can be defined
as
(m¥ - m';r)z

Jw,;, wy, wy) =
(112 3) V?‘*“’f’u

(16.20)
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where w = (w,. w,. wy) is the optimal projection transformation, m and my, are
the means of the projected road and noroad samples, respectively, and v2 and
vi are the variances in the projected road and noroad samples. RGB is the
three-dimensional color feature space. With w = (w, w,, wy) = (0.175, —0.030,
0.795) for the gravel road, the discriminatory power is computed as 1.267. For a

typical paved road image, the optimal color transformation changes to

Y = —0.35R + 0.200G + 0.450B

with the discriminatory power of the transformed image Y as 2.58. In contrast
with this figure, the discriminatory power computed only from the blue image is
1.990.

Experience obtained by Turk et al. (1988) has shown that good segmenta-
tion is achievable without using the green band for their VITS system, so the
problem can be reduced conceptually to finding the slope of a line in a two-
dimensional red-blue plane, rather than finding the normal of a plane in RGB
space. Figure 16.35 shows a scatter diagram of the red and blue components of a

road image constructed by properly choosing the threshold in the following
expression:

(16.21)

I j) = 1 if wR(i.j) +w,G(i,)) +wiB(i,))+ 4 < 8
=10 otherwise

The binary images [’ (a function of the threshold 4) shown in Figure 16.35b, c,
and d are the results obtained that correspond respectively, to the separating lines
marked (b}, (¢), and (d).

Extraction of Road Boundaries

RGB images derived from the previous paragraphs will first be transformed into a
single transform color image according to the parameter w derived in the
preceding section. A pixel classification technique basing on the probabilistic
method can be used to segment the image into ROAD/NOROAD regions. Let

P(x|ROAD) = conditional probability that pixel x is from the road
class

P(x]NOROAD) = conditional probability that pixel x is from the noroad
class

P(ROAD) = a priori probability of a pixel being road
P(NOROAD) = a priori probability of a pixel being noroad

P(ROAD) AND P(NOROAD) can be approximated by the area of the road and
noroad regions in the image.
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FIGURE 16.35 (a) Scattergram. (b)-(d) Result of thresholding at different values. (From
Turk et al., 1988.)

Denote P(INOROAD)/P(ROAD) by fi; a pixel x is classified as “ROAD™ if
the ratio is
P(x|ROAD)

Bl o3 v’ SR |
P(xNOROAD) f

Otherwise, it is classified as “NOROAD.” Results obtained after applying this
pixel classification algorithm are shown in Figures 16,36 and 16.37. Figure
16.36b is the segmented road region for the gravel road image shown in Figure
16.36a, and Figure 16.37b that for the paved road image shown in Figure 16.37a.

Building a Scene Model

Road regions extracted by the image segmentation algorithm described in the
previous sections are what the vision system really sees. Reasoning in geometry
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(a)

FIGURE 16.36 Typical gravel road image. (From Kuan et al., 1988.)

for the road model introduced would provide the vision system with perception
capability. Generic information about road construction is useful in road
segmentation. For example, if a road edge exists on the left side of the road,
there should also be one on the right side. When the road turns on a curve, both
the left and right sides of the road change direction smoothly. With the exception
of the end of the road, the continuity between road boundaries exists in two
successive images, and so on. This information is useful for geometric reasoning,
especially in situations where there are different lighting conditions, seasonal
changes, puddles or shadows on the road, and so on.

If every edge element of a roadside has support from the other side, they are
used in the final road interpretation. When all the road edge points are selected in
the image, a scene model or a three-dimensional description of the road can be
established and sent to the reasoning subsystem for trajectory calculation. Various
approaches, such as a flat-earth geometry model and a hill-and-dale geometry
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(a)

(b)

FIGURE 16.37 Typical paved road image. (From Kuan et al., 1988.)

model, have been suggested for this task. Interested readers are referred to [Kuan
et al. (1988)] for details. According to this report, a field test has been performed
by driving a vehicle down the road at 8 to 10 km/h with a traveling distance of up
to 4.5 km along a paved road, and 0.4 mile along a gravel road that passes through
several intersections and gentle curves. The processing time was 4 to 5 seconds
per image and the visibility limit was set at 40 m. Road tests were conducted
under both clear and cloudy skies.

Similar work has been in progress at General Motors Research Laboratories
on a lane-sensing system for vehicle automatic guidance. Figure 16.38
shows how a collision warning signal is generated with a vision-steered radar
concept.
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With Vision-Steersd Radar:

* Images from Camera
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Lane Boundarnes and Curvature

* This is Used to Steer Laser
Radar Beam into Curve
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FIGURE 16.38 Collision warning: vision-steered radar concept. (Courtesy of General Motor Research Laboratory,
LANELOK, 1990.)
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Computer System Architectures for
Image Processing and Pattern
Recognition

171 WHAT WE EXPECT TO ACHIEVE FROM THE
POINT OF VIEW OF COMPUTER SYSTEM
ARCHITECTURE

There is a very famous Chinese saying that seeing for oneself is a hundred times
better than hearing from others. This implies that the information content in a
picture is tremendously rich—and it really is. However, to store a picture in
computer memory of to transmit a picture by computer, the amount of informa-
tion that must be processed is extremely large. Let us take for illustration an
image of 512 x 512 pixel resolution; 512 x 512, or 262,144, bytes are needed to
store one image. To process this image in real time, we need to process
512 x 512 x 8 x 30bits, or 62.9 Mbits, in 1 second. If the resolution of the
image is to be upgraded a little, say to 1024 x 1024 pixels, an even larger
memory (1.05 Mbytes for one image, which is equivalent to storing a 250-page
book) and a higher processing speed (31.5 Mbytes/s) are needed. 1f an average of
15 floating-point operations (FLOPS) are assumed to process a pixel in an image,
there will be 1.05 x 15, or 15.73, MFLOPS (millions of FLOPS) for a single
processing function such as edge detection. As we know, many other functional
operations are involved in an image processing algorithm, so an adequate image

563
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analysis computer is expected to perform at least 1 G FLOPS or higher with a
memory bandwidth of at least 2 Gbytes for present and future applications.
Although computing capacity continues to evolve at an astonishing speed, yet in
terms of cost-effectiveness and affordability, the development and popularization
of the image processing and understanding system are restricted.

This is a problem of great concern, especially in real-time processing. We
could not turn our hope into reality by developing a computer that works faster.
The best way 1s to distribute the work over an ensemble of processors to achieve
speedup as a result of concurrent implementation. This is the subject of parailel
processing. Diverse opinions exist as to how much speedup can be achieved by
parallel processing. Some predictions are low; others are high. These might come
from a different basis for the ideas in processor design. The most optimistic
prediction (Hwang and Briggs, 1984} can reach a value of n/log, n, where n is the
number of processors used. When n = 1000, the speedup value is 144.8. When
n = 10,000, the speedup can go as high as 1086. In such cases the system
architecture comprises a large group of processors, each with simple processing
functions. Such an idea is applicable to image processing, where the task typically
forms the bulk of the computation and possesses comparatively few well-
characterized operations. In addition, for point processing and neighborhood
processing, which occur so frequently among the various algorithms, the data
structure of the image can be partitioned into small blocks for concurrent
processing. This strongly supports such an architecture.

172 OVERVIEW OF SPECIFIC LOGIC
PROCESSING AND MATHEMATICAL
COMPUTATION

No general principles exist for systematic application of parallel processing
techniques to image processing. Two approaches can be followed: dedicated
implementation and reconfigurable networks for the connection of multiple
programmable processors. Dedicated implementation can provide high-speed
performance, but the range is narrow. The reconfigurable network provides
flexibility—but achieved at the expense of increased complexity and some
sacrifice in processing speed. The complexity comes primarily from communica-
tion and interaction between parallel image processing tasks. As a matter of fact,
both of these two approaches have valuable distinguishing features and have
absorbed the good points of others into their systems to make their systems more
successful.

To summarize, it seems indicated to form a system with a large number of
processor elements, regardless of the form—whether a dedicated implementation
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or a reconfigurable network architecture. For this reason, the discussion in this
chapter assumes that a multiple-processor structure is used.

In general, an algorithm in image processing can be divided into tasks, each
of which is divided into subtasks. Among the subtasks, some can be used for
these problems (or algorithms) and can be used in other problems (or algorithms).
Proper sequencing of these subtask operations in their respective algorithm
depends on the particular problem tackled. They may be operated concurrently
or governed sequentially by precedence constraints. The output of one subtask
may be the input of another. Qutputs of several subtasks may be integrated as an
input for another. The output of one subtask can also be fed back as the input of
several others. And on and on. Communication and interactions among the
subtasks should be designed in a very flexible fashion and be software controlled.

Among the arithmetic computations and logic operations within each
subtask, there may be two categories. One uses only data of its own or data
from the local area; the other might require information about the pixels, which
spread over the entire image. For the first category of processing, which includes
point processing and neighborhood processing, the image can be partitioned
obviously and easily into a disjoint data subset. The entire processing operation
can easily be broken down into subtasks, each operated on a separate disjoint data
subset. There should not be any problem in concurrent processing on the subtask
level. The only thing to worry about is interconnection of the output of the
subtask with the next subtask. Of course, a data and resource dependency
problem still exists at the subtask level (more on this below). But for the other
category, where a task is operated on data of the entire image (i.e., the data
needed cannot simply be partitioned as described above, as in FFT operation),
parallel processing can also be carried on except that the data have to be
transformed into a different mode.

In intertask communication and interaction, two dependencies, the resource
and data dependencies, need to be considered. “Resources” here refers to the
processing elements, memory units, and 1/0 devices, as shown in Figure 17.1.

M M . e
P 3
M

Interconnection and resource
arbitration network D

processor

memory element

U
m
n

processing element

VLS device

!

D D ¢ . e D

FIGURE 17.1 Multiple-processing element system.
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Linking of the processing elements is through the interaction network, whose
function is to establish data/instruction paths between subsets (or partitions) of
the resources. These partitions can function independently or interdependently,
Proper partition of the resources and proper scheduling of the subtasks are
expected to achieve a better performance (i.e., the least total processing time) for
a certain application. For another application, another partition and interconnec-
tion within the partition should be established.

For a good architecture, the system for pattern recognition and image
processing applications should be able to function in a single-instruction—
multiple-data-stream {SIMD) mode, and operate synchronously with replicated
arithmetic/logic units. No doubt, a high degree of pipelining is expected for
overlapping of the several steps involved in an instruction cycle: instruction fetch,
decode, effective address computation, operand fetch, and instruction execution.
Similarly, a high degree of pipelining of arithmetic is also expected. In addition,
the system should support asynchronous computation in the multiple-instruction—
multiple-data-stream (MIMD) mode, with processors doing jobs independently.
Results obtained from the computation of each process are integrated according
to a certain function. These are the operating characteristics of image processing
and pattern recognition, where the results of local computations are not images
but are the data structures, which have to be combined to give a meaningful
interpretation or description (e.g.. for a scenic object).

173 INTERCONNECTION NETWORKS FOR SIMD
COMPUTERS

Consider » processors in a system, with each processor capable of carrying out
some task(s) independently on a set of input data. Many interconnection networks
have been suggested for SIMD computers and some are summarized in Figure
17.2. The linear array shown in Figure 17.2a is a one-dimensional (pipeline
architecture). The ring, star, tree, mesh, and systolic arrays shown in Figure 17.2b
to f are of two dimensions, while the completely connected, chordal ring, three-
cube, and three-cube-connected cycle networks are classified as three-dimen-
sional in topology. Many of these interconnection networks are useful for image
processing and pattern recognition purposes. However, owing to space limita-
tions, only systolic array architecture is discussed here in more detail.

174 SYSTOLIC ARRAY ARCHITECTURE

Systolic array is at present a very common architectural form of computer
systems. Many versions have been developed by universities and industrial
organizations since the form was suggested by Kung in 1982. Systolic array, as
described in Figure 17.2f, possesses the following features:
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FIGURE 17.2  Static interconnection network topologies. (From Feng, 1981.)
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1. It consists of a set of interconnected cells (PEs) each capable of
performing simple operations such as LOAD M; ADD M; ADDB
source; SUB M; SUBB source; MULB source; DIVB source, UP,
DOWN, LEFT, RIGHT (for communication of data between each
element and its four neighbors via communication registers); MOV
destination source; and THR ##.

2. It possesses a simple and regular communication and control structure
so that the PEs in the system are interconnected to form a systolic
array.

3. Information flows between cells are handled in pipeline fashion.

These features explain why systolic array is cost-effective and offers high
performance, as many operations are local in nature and run repetitiously through
all the pixels in the image (a huge number). Figure 17.3 shows two examples of a
systolic array configuration in practical use, a square and a hexagonal config-
uration.

Due to its simplicity, the systolic array technique has attracted a great deal
of attention during the past two decades. However, the implementation of systolic
arrays on a VLSI chip has many practical constraints, due mainly to its I/0
barrier. For this reason, reconfigurable systolic array has become a popular topic
of development in the field of computer system architecture. Figures 17.4 to 17.6
show various specialized processor array configurations that meet algorithmic
needs.

There are quite a2 number of commercial systems capable of performing
basic functions such as grabbing, specific image processing, and image
display. Interested readers should contact vendors for details. Processing of
color images is another challenging subject. It is hoped that more results will
soon be available.

I | I

FIGURE 17.3 Two examples of a systolic array configuration.
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FIGURE 174 Algorithmically specialized processor array configurations. (From Snyder,
1982.)
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FIGURE 17.5 (a) Switch lattice structure and its configuration into a binary tree (b) and a

mesh pattern (¢). Circles represent switches; squares represent PEs. (From Snyder, 1982.)
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FIGURE 17.6 Realization of an algorithm for setting up a binary tree rooted at any node R(«). (From Yalamanchilli
and Aggarwal, 1985.)
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Appendix A: Digitized Images

The 512 x 512, 256-gray-level images in Figures A.l1 to A.16 can be used as
large data sets for many of the pattern recognition and data preprocessing
concepts developed in this book. These data sets can be used in their original
form or they can be corrupted, for example, by adding noise to each pixel or by
any specified gray-level transformation. By so doing, a variety of input data sets
can be generated that can be used to illustrate algorithms for pattern recognition
and for data preprocessing. The results obtained can be displayed on a standard
line printer, dot printer, thermal printer or laser printer, as shown in the text.
These digitized images were recorded on 3% and 5_%—in.—high-density disks.

FIGURE A.1 A 512 x 512 256-gray-level digitized image.

573
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FIGURE A2 A 512 x 512 256-gray-level digitized image.

FIGURE A3 A 512 x 512 256-gray-level digitized image.

FIGURE A4 A 512 x 512 256-gray-level digitized image.
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FIGURE A5 A 512 x 512 256-gray-level digitized image.

FIGURE A6 A 512 x 512 256-gray-level digitized image.

FIGURE A.7 A 512 x 512 256-gray-level digitized image.
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FIGURE A8 A 512 x 512 256-gray-level digitized image.

FIGURE A9 A 512 x 512 256-gray-level digitized image.

FIGURE A.10 A 512 x 512 256-gray-level digitized image.
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FIGURE A.11 A 512 x 512 256-gray-level digitized image.

. .
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FIGURE A.12 A 512 x 512 256-gray-level digitized image.

FIGURE A.13 A 512 x 512 256-gray-level digitized image.
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FIGURE A.15 A 512 x 512 256-gray-level digitized image.

FIGURE A16 A 512 x 512 256-gray-level digitized image.



Appendix B: Image Model and
Discrete Mathematics

B.1 IMAGE MODEL

A dictionary definition of an image is a “representation, likeness, or imitation of
an object or thing, a vivid or graphic description, something introduced to
represent something else.” As used in this book, an image contains descriptive
information about the object it represents. For instance, a photograph displays this
information in a manner that allows the human eye and brain to visualize the
subject. Under such a relatively broad definition, images can be classified into
several types based on their form and the method of their generation. Figure B.1
shows the set of all objects, while images form a subset of them.

Within the image subset, there are images that can be seen and perceived by
eye. There are also some physical images that are nonvisible but are distributions
of measurable physical properties. Photographs, drawings and paintings, optical
images, and the like belong to the first category, while temperature, pressure,
elevation, and population density maps are nonvisible physical images. Another
subset of physical images is that of multispectral images, those that have more
than one local property defined at that point. Another subset of images contains
abstract mathematical images in the form of continuous functions, discrete
functions, or digital images. Digital images, the numerical representation of
objects, are those with which we have been primarily concerned in this book.
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Objects
Objects Images
Visible images Multispectral Nonvisible Abstract images
physical images physical of mathematics
images
e e s —e— P — P —
Pictures Optical Trispectral images Temperature Continuous
images (RGB) map
Spectral Multispectral images Pressure map Discrete (digital
images in images)
transform
domain
Photographs LANDSAT images Elevation map
(24 channels)
Drawings Population
density map
Paintings
FIGURE B.1

With the images defined as above, it will be clear that digital image
processing involves a sequence of operations performed on numerical representa-
tions of objects to achieve a desired result. In the case of pictures, processing
modifies their form to make them more desirable for diagnostic use.

In the analysis and processing of an image, it is usually convenient and
often necessary to characterize mathematically the image to be processed. An
image can be represented as a spatial radiant energy distribution, which is a
function of five variables shown as

Cx,v.2,1,2) (B.1)

where x, y, and z are spatial variables (space), ¢ is a temporal variable (time), and
A 1s a spectral variable (wavelength). In general, the image function C(x, y, z, ¢, 4)
is somewhere between zero and 4, where 4 is the maximum image brightness,
which in image processing is set to 255 if 256 gray levels are used, or is setto 1 if
normalized. This is because light intensity is a real positive quantity and is
proportional to the modulus squared of the electric field. Image light function is a
real, nonnegative function. With the limitations of imaging systems and recording
media, and for mathematical simplicity, images are assumed to exist over a
rectangular region. We than have

0<x<L,
0<y=<lL, (B.2)

0<z<L,
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Since an image is observable only over a finite period,
0<t<T (B.3)

Basically, the colors we perceive in an object are determined by the nature of the
light reflected from the object. A body that favors reflectance in a limited range of
visible spectrum will exhibit some shades of color. For example, red objects
reflect light within a spectral range of 0.57 to 0.70 pm (10~° m) while absorbing
most of the energy at other wavelengths. Green objects reflect light within a
spectral range of 0.48 to (.57 um, blue objects within 0.40 to (.48 pm, ultraviolet
objects within 0.25 to 0.40 um, and infrared from 0.9 to 1.5 um. That is,

a<i=f (B.4)

where « = 0.25 um and ff = 1.5pum for the objects of our interest. A general
image function C(x, y, z, t, A) is therefore a bounded five-dimensional function
with bounded independent variables. This function is assumed to be continuous
over the domain of definition.

B.2 SIMPLIFICATION OF THE CONTINUOUS
IMAGE MODEL

The brightness response of a human observer to an image light function is
measured by the instantaneous luminance of the light field, or

(o]

L(x,y,z,t) = J Clx,y,z,t, )V (L) dA (B.5)
0

where L(x, y, z, t) is the brightness response of a human observer to an image
function, and V(4) is the relative luminous efficiency function or spectral
response of human vision. For an arbitrary red-green-blue coordinate system,
the instantaneous tristimulus values are

o0

R(x.y,z, 1) = J C(x,y,z, t, )R () dA
0
oQ

G(x,y,2.1) = J C(x, y, 2. t, )G,(A) dA (B.6)
0
oQ

Bx,y,z. 1) = J C(x,y,z,t, A)B.(A)dA
0
and for a multispectral coordinate system, the ith spectral image field is given as

o0

Fix,y.2.1) = J Clx, .z, t, )S(A) dA (B.7)
0

where S;(2) represents the spectral response of the ith sensor.
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In many imaging systems, the variable 7 does not change. For example, an
image obtained from an image projection device does not change with time. This
is also true when an image is sampled in frames, as in movies. The variable z is
generally sampled because we usually work on plane images. Consequently, the
variables ¢ and z may be dropped in subsequent discussions. Based on the
arguments above, a continuous-image model is then simplified into a two-
dimensional light luminance function of spatial variables:

0<f(x,y) <4 (B.8)
where f(x, y) is a nonzero and finite number.
Images that we perceive in our everyday visual activity normally consist of

light reflected from objects. The image function f(x, y) may then be considered as
being characterized by two components:

fCx,y) = i(x, y)r(x, ) (B.9)

where i(x, y) 1s the illumination component, representing the amount of source
light incident on the scene being viewed and is

0 <i(x,y) < o0 (B.10)

and r(x,y) is the reflectance component, representing the amount of light
reflected by the objects in the scene. The nature of the illumination component
i(x, y) i1s determined by the light source and varies to a very large extent. For the
sun, i(x, y) on the earth surface is 9000 footcandles (fc); for the moon it is 0.01 fc.
The range of these two i(x, y)’s varies as much as 900,000-fold. The design
standard for office lighting is 100 fc.

The reflectance component r(x, y) represents the amount of light reflected
by the objects in a scene, and is

0<rix,y) <1 (B.11)

where 0 indicates total absorption and 1, total reflectance. r(x, y) is determined by
the characteristics of objects in a scene. Some typical values of r(x, y) for various
objects are:

Black velvet 0.01
Stainless steel 0.65
Flat-white wall paint 0.80
Silver-plated metal 0.90
Snow 0.93

Figure B.2b shows a coded image of the image shown in Figure B.2a. Numbers
on the coded image matrix are gray levels of the individual pixels, which are in
the range [L.., Lyax), [0,1], with O denoting black and 1 denoting white.
Intermediate values are shades of gray varying from black to white.
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FIGURE B.Z (a) Image; (b) a coded image for (a).



584 Appendix B: Image Model and Discrete Mathematics

B.3 TWO-DIMENSIONAL DELTA FUNCTION

The delta function or Dirac delta function, which is a singularity operator, is a
very useful technique used to characterize two-dimensional systems via impulse
response or point-spread functions. This function is widely used in the analysis of
systems involving sampling of continuous functions. For single-dimensional
analysis, the Dirac deita function &(¢) is defined as the rectangular function
shown in Figure B.3. When / approaches 0 as limit, and the area under the curve
ffs o(t)dt = 1, with ¢ being a nonnegative number, d(¢) is a pulse at + = 0 and
equals zero elsewhere.

In the two-dimensional case shown in Figure B.4, the two-dimensional
Dirac delta function can similarly be defined as

0,(x.y) = n? rect(nx, ny) (B.12)

where » > 0 and

Ix| < 1 and |yl < :
. — 2n Y — 2n
()
1
~»
-112 1R
h
1 Ixl < 4
rect [x] = { -2
0 Ixl >%

FiGURE B.3
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'S

FIGURE B.4

We observe that d,(x, y) is nonzero only inside a 1/n x 1/n square in the image
plane, and

oC

JJé,,(x, yvydxdy =1 for all values of n (B.13)

—00

As n approaches oo, the two-dimensional Dirac delta function possesses the
following properties:

_Joo at the point x=0,y =0
ox.y) = { 0 elsewhere (B.14)
In general, the § function at point (&, ) is
oy | at the pointx =¢,y =14
ox —cy—n = [ 0 elsewhere (B.15)

and

&

JJé(x.y)drdyz 1 fore > 0 (B.16)

—&
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If we multiply F(, n) by the o function and integrate, we have

o

”F(f, MG — &,y — n)dEdn = Fix,y) (B.17)

-0

This is called the sifting property of the Dirac delta function.

B.4 ADDITIVE LINEAR OPERATORS

A two-dimensional system 1s said to be an additive linear system if the principle
of additive superposition holds for the system:

Oa) fi(x. ) + a L& P} = @ OLfi(x, )} + @, 0f fo(x, y)} (B.18)

where (¢ is the mapping operator, and a; and a, are arbitrary scalars. With the
sifting integral, an input function f(x, y) can be represented as a summation of
amplitude-weighted Dirac delta functions:

o0

FCoy) = ”f(é, MG — &,y ~ ) dé dn (B.19)

oC

when f(£, n) is the weighting factor of the impulse located at the coordinates
(&, n) in the x—y plane (see Figure B.5), and o(x — &, y — 1) is a pulse at (£, n).

/ £ e

FIGURE B.5
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B.5 CONVOLUTION

In the system shown in Figure B.6, the output function may be defined as
glx,y) = C{f(x.y)} (B.20)

Substituting Eq. (B.20) for f(x, y) gives

oC

glx.y) = ” FEmdx - &y —n)ddn (B.21)

-0

Since the linear operator ¢ can only be applied to the term in the integrand that is
dependent on the spatial coordinate variables x and v, we have

glx.y) = ” FEMCS = &y = middn (B.22)
e
n
(J\ n n
INIPANE S &
e
(b) hig. ™ (¢) ht-§. -m
(a) K(E, n)
n
n
- £
——5—-—- y E’ \\1 )
L P
) Wx -, y-n) (e) [(g, n) hix-g, y-n)

FIGURE B.6 Graphical example of a two-dimensional convolution. (@) f(E. ) (b)
RS, n); () A(=E, —n); (d) Alx — &y — y); (@) £(E, Mhlx — & v — ).
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or

o0

ﬂ%ﬁ=JJf@wM&—€J"Wﬂﬁdu (B.23)

o0

where h(x — &,y — 1) = ("{8(x — &, y — i)}, the impulse response of the two-
dimensional system, is called the point-spread function. This superposition
integral then reduces to the special case called the convolution integral, convol-
ving the input with the impulse response. In discrete form,

+00
gx. )= 33 flE Mh(x— &y —n) (B.24)

Sp=—00

Symbolically, the convolution operation f(x, y), convolving with A(x.y), can be
expressed as

g(x.y) =f(x.y) * h(x, y) (B.25)

The convolution integral is symmetrical in the sense that

oo

ﬂxw=Jqu—iy—MMémd&m (B.26)

e

meaning that A(x, y) convolves with f(x, y).

Figure B.6 provides us with a visualization of the convolution process. In
Figure B.6a and b, the input function f(x, y) and impulse response are plotted in
the dummy coordinate system (&, 7). In Figure B.6¢c the coordinates of the
impulse response are reversed. The impulse response is offset by the spatial
values (x, ¥) shown in Figure B.6d. The shaded region in Figure B.6e shows the
integrand product of the convolution integral of Eq. (B.23). The integral over this
region gives the value of g(x,y) at the offset coordinate (x,y). The complete
function g(x.y) could, in effect, be completed by sequentially scanning the
reversed, offset impulse response across the input function while integrating the
overlapping region.

Example. Figure B.7 shows a 2 x 2 and 3 x 2 arrays k(&, ) and f(<, n),
where the circled elements are at the origin. The precedure involved in obtaining
the convolution of these two arrays are shown step-by-step in the figure.
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n21 4 nll 1 n mM
35 ® -1 -1 -1 O
g £ 11 & 1 1&
(@) f(E ) (®) A, m) (©) h(-E, -n) (d)h(l-E, -n)
(32 array) (2x 2 array) h(-%, —n) shifted by
x=l,andy=0

FIGURE B.7 Example showing the step-by-step operations of the convolution of two
arrays.

When the circled element of the shifted version of h(—¢, —#) shifts to the (0, 0),
(1.0), (1, 1), and (2, 2) elements of f(&, ), the convolved results are, respec-
tively, as follows:

Atclement 0.0 | 1|70 =1

element (0, 0): 0 0 * L 1lE
1 3 -1 1

At element (1, 0): * =2
0 0 1 1

At element (1, 1); 2 L

element (1. 1): |3 * L1l =

and

0 0 -1 1

At element (2, 2): * =35
1 4 I 1

By following this procedure, the result obtained by convolving h(—&. —#) with
f(&. n) is shown below:

00 0 00
23 5 50
3 3 11 1 0
1 2 2 -5 0

In general, if A(. 7) is of size (M| x N,) and f(&, n) is of size (M, x N,), the
convolution of these two arrays,

g&.my =& nxh& n

will yield an array of size (M, + M, — 1) x (N, + N, — 1). In the case shown in
the example, M; = 2, N; =2, M, = 3, and N, = 2, the result of the convolution
glé,p)isanarray of 2+3—-1)x(2+2—1),0r4 x 3.
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B.6 DIFFERENTIAL OPERATORS*

Edge detection in images is an important task in image processing and is
commonly accomplished by performing a spatial differentiation of the image
field followed by a threshold operation to determine the points of steep amplitude
change. The horizontal and vertical spatial dervatives of an image function
[f{(x,y) are, respectively,

)

b (B.27)
g =Ty '

y ay

The direction-oriented spatial derivative of the image field along a vector
direction r subtending an angle ¢ with the horizontal axis is given by

Yy ¥de o dy
T dxdr  dydr

V{f(x, »)} (B.28)

or
V{f(x,y)} =d,cos¢ +d,sin¢d (B.29)

with dx/dr and dy/dr represented by cos ¢ and sin ¢, respectively. The magnitude
of the directional derivative (or gradient) is then

IV, )} = (Jdi + dp (B.30)

Let us further denote the spatial second derivatives in the horizontal and vertical
directions by

dy = LFACS) (B.31)
Ff(x.y)
d,, = P (B.32)
The second-order directional derivative can then be
Fflx.y) 3 .
2 —_ i _—

Vf(ry) = =550 = (V)

=d, +2d, xd, + d),_‘, (B.33)

*See Pratt, W. K., Ditigal Image Processing, Wiley, New York, 1991, pp. 9-10.
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For a high-order derivative (say, an nth-order derivative),

n & . gri ,
Vi =5 1) L2t

=0

Note that the notation V*f(x, y) in the literature can mean either a second-order
derivative or a laplacian. They differ by a cross-product term, 2d.d,. The
laplacian operator is not a function of spatial direction, but a scalar quantity.

i (B.34)

B.7 PRELIMINARIES OF SOME METHODS USED
FREQUENTLY IN IMAGE PREPROCESSING

Numerical Integration

For the one-dimensional image (or signal) shown in Figure B.8, where

g,i=0,1,... .M — 1, are sampled at equal distances along the x direction,
80% 81 & EM-2 8M-1
. . . . . . . . _> X
- - v
pixels
FIGURE B.8
I/ l I
0 1 2 1M,_1
1 8 g
O ° 01 o 02 . gO,M-l
--4y ~~ * . [~}
Ax {
§ 8 8
o 10 o N o 12 1, M1
. . . o
8Nn-2.0 8n.2.1 En-a2
° o o EN-2.M-1
. . . o
&n-1.0 En.1.1 8n.1.2
o o o ? ogN-I.M-l

FIGURE B.9
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and for the two-dimensional image (see Figure B.9), the integration f glx)dx
and the double integral [ | g(x, y) dx dy can be performed in any of the following
ways:

1. Rectangular rule

{a) Single integration

M—1 -
I =J gdx = (N{:‘lgi) Ax (B.35)
i=1

0

or
M=2
1=(La)n (B36)
i=0

Depending on whether g; or g,,, is chosen for the computation.
For consecutive pixels, Ax = 1.

(b) Double integration

N2
Iy =AxY go along the column (single integration)
=0

N=-2
I, =Ax> gy along the column (single integration)
i=0

(B.37)

N-2
Iy = szogi,M—l
J=

or
N=2
g:Ax;g,-j j=0,12,....M—1 (B.38)
Then
M=2
I, = Ay Ij (B.39)
7=0

2. Trapezoidal rule

(a) Single integration

M—1 Ax M=2
/= J gdi=5 3 g+ gm) (B.40)
0 ==
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(b) Double integration

Ax N=2
[j = _2'-'~ = (giJ +gi+1J) (B41)
along the columns j =0,1,2,...,M — 1; increment =1
Ay M-2
=7 LG+ (B.42)

3. Simpson’s § rule

(a) Single integration

M—1 Ax M-3
=] et =5 Y @t + e (B.43)
0 =

Note that the increment used in this case 18 2.
(b) Double integration

Ax V-3 .
f,= 3 2 (g, +48i11, +8ivzy)  increment =2 (B.44)
=0

Ay M=3 ‘
I, = 5 j;o (, +4L 1 +145) increment = 2 (B.45)
Finite Differences

The method of finite differences is another tool that is useful to our image
processing. Forward differences of different orders are

Agi =841~ &
Ng =Ag,, — Ag,
=gi2 — 28y T &
Ngi=gi3— 382 + 3841 — & (B.46)

n qn
A"gi = Z(_l)l( R )gn—-j-{—t
J=0 J

where

h ] n!
() =9=5an (B47)
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x g I Az A2 Az g Sy
X0 8o
X — \A2
1 81 £0
X >A81 - 2 :Aago -~ 4
——
2 g2 \Agz /Azgl \'A381 /A‘go '\.Asgo 6
X3 83 ~a&g 7 ~at1 T - )
T agy ~— -8y -8 — ~d 0
x 2 - —~— 2g — ~— ‘g - -~ Bg -
4 4 — A53 3 /A 2 5 A bS]
88y = 5, A& T 4 Tale”
X5 8 ~ag a’gs
\Ags - 2 4 \6384 —
Xg &g <Ag —aws 7
6
X7 g7
FIGURE B.10

When extended to a two-dimensional problem [i.e., for the two-variable function
g = f(x,y) shown in Figure B.11], the forward and backward difference quotients
with respect to x at the point (i, j) (refer to Figure B.11) are

g = %—gﬂ forward difference
g = &’—-_Kfllli backward difference

Those with respect to y are

g, = Eiy+1 ~ Eiy forward difference
Y Ay
g = &iy ~ &ij-t backward difference
- Ax
>j
gi—l.j
i (]
reAy==
o o o g
g[ -1 Ax[ g; j g+l
o]
g|+i.j

FIGURE B.11

(B.48)

(B.49)

(B.50)

(B.51)
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Their corresponding finite differences of second order are

8y — 8% _ gi+ly — ZgiJ +gifl‘;

_ _ (B.52)

8w Ax (AX)Z

g =S & Bt T 2gi, + 8ij-1 (B.53)
> Ay (AyY’

With the second-order finite differences shown above, the laplacian operator, Vzg,
which is

¥g  Pg B.54
s 0 (B.54)

can be expressed as

Vzg — giv1j zg:J + iy _+_giJ+I - zgi‘] + 8ij-1

(B.55)
(Ax)’ (Ayy’
If Ax and Ay are chosen to be unity in an image file,
Vg =gy + &1y F 8 + 8y — 48 (B.56)

This 1s the simplified form for digital implementation of the laplacian.
So far we have discussed some of the mathematics we need for image
processing. This gives you an idea as to how to manipulate the data involved in a

discrete image. More mathematics will be given in the course of our future
discussion where needed.

PROBLEMS

1. Work out step by step the convolution of the following two arrays.

nl2 1 4
@ 3 5

Jxe

S0
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Consider the 2 x 2 and 4 x 3 arrays A(¢, %) and f(&, n) where the
circled elements are at the origin. Obtain the convolution of these two
arrays.

nl 4 5 2 1 n
3 2 56 I 1
D2 45 O -1
4 ¢
F&n) h(, 1)

Prove that the generalized form of the forward difference of nth order is
! n
Angl = Z(_l)l( . )gn——j+:
j=0 J
Generalize the expression for a high-order (nth order) derivative:

n af(x, F(x,y
Vn{f(x:Y)}:Z(j) fz(;'y)x aﬁl(-:))

=0




Appendix C: Digital Image
Fundamentals

C.1 Sampling and Quantization of an Image

The image model f(x, y) is a two-dimensional light luminance function of spatial
variables x and y. If this function f(x, y) is digitized spatially, it is referred to as
image sampling. When the image is digitized in amplitude, it is called gray-level
quantization.

In image processing, images are assumed for mathematical simplicity over
a rectangular region. Digitization of the spatial coordinates of f(x, y) gives an
N x N image array as shown in Figure C.1. Each element of this image array is
referred to as an image element or picture element (pixel). N, which is the
number of pixels in each row, or in each column, is frequently chosen to be 2%, an
integer power of 2. Readers of Chapter 14 will know the reason for such a choice.
G, which is the number of gray levels used in representing the image function at
the pixel (x,y) and x,y=0,1,2,...,N — 1, is also chosen to be an integer
power of 2, namely 2. With such a choice of N and m, the total number of bits
required to store a digitized image of size N x N image array and of 2™ gray
levels for its representation is

b=NxNxm

If N =512 and m = 8 (256 gray levels), then based on the foregoing argument,
to transmit a picture digitally at a TV rate, we have to have a data transmssion rate
of

512 x 512 x 8 x 30 x 24 = 1510 MB/s

597
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f(0,0)  f(0,1) (0, N-1)
f(1,0)  f(1,1) f(1,N-1)
f(2,0)  f(2,1) F(2,N=1)
f(N-1,0) f(N-1,1) toe cea f(N=1,N-1)

FIGURE C.1 N x N image array.

if 30 frames per second and 24 multiplex channels are assumed. The frame-
grabbing time will be approximately

512><512N00105 ead for ofh o
25 < 106~ - s + overhead for other gating time

or less than one-thirtieth of a second. In general, the quality of the image depends
on the spatial resolution and on the number of gray levels to be used for each
pixel. If the resolution is too low, the image quality deteriorates rapidly and a
checkerboard effect is noticeable. If fewer bits are used for the gray-level
representation in an image (even if the spatial resolution is kept fairly high),
false contouring effects in the smooth background area become more and more
pronounced. This effect increases sharply as the number of gray levels used for
the image representaion decreases futher. As a rule, a minimum of 64 gray levels
should be used. For applications where better image quality is expectd, 128 or
256 gray levels are preferred. A 512 x 512 spatial resolution is appropriate for
image reprsentation, but higher resolution (e.g., 1024 x 1024) is utilized for
high-precision nondestructive industrial measurements.

It should be mentioned here that the best values of N and m to be chosen
for images are very dependent on the images themselves: that is, images with
relatively few details, images containing a large amount of detailed information,
images with an intermediate number of details, and so on. However, several
empirical conclusions can be drawn: (1) the qualtiy of images tends to increase,
in general, as N and m are increased; and (2) isopreference* curves in the Nm
plane tend to become more vertical as the details in the image increase (i.e., there
is not much change in image quality even when the number of gray levels
continues to increase).

So far uniform sampling and quantization have been discussed. But in
many cases, an adaptive scheme of quantization is more suitable, due to

*An isopreference curve is one in which the points in the Nm plane represent images of equal
subjective quality.
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No. of
pixels

0 255
Gray levels

FIGURE C.2 Imaging geometry.

characteristics of the image under discussion. For example, in the neighborhood
of a sharp gray-level transition, finer spatial sampling is recommended; in
relatively smooth regions, coase sampling is sufficient. In case a large number
of pixels fall in a certain range of gray levels, then for that range, the quantization
level should be finely spaced, and outside that gray-level range, coarsely spaced
quantization can be used. From the histogram shown in Figure C.2, it can be seen
that a lot of pixels concentate in the range between points a and b. If we would
like to have more details available from the image, a wider range of gray levels
should be allocated to that part. This technique of allocating a nonlinear range of
gray levels to take care of a high concentration of pixels with similar gray levels is
usually referred to as tapered quantization.

C.2 IMAGING GEOMETRY*
C.21 World-Point to Image-Point Transform

As discussed in Appendix B, an image can be represented as a function of five
variables as C(x, y, z, t. ). As mentioned previously, the image frame obtained is
the spectral response of the sensor, or the brightness response of a human
observer in the case of a human vision. This response usually does not change
with time. Hence the 5-tuple function becomes C(x, y, z).

*Much of the matenal n this section 1s from Fu, Gonzalez, and Lee (1987).
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FIGURE C.3 Imaging geometry with two coordinate systems. (From Fu, Gonzalez, and
Lee, 1987.)

In image processing, our work focuses mainly on the plane images. Even in
the case of stereo vision, we are still working on plane images. What we work on
in stereo vision is the combination of two (instead of one) plane images, which
are taken from two sensors a fixed distance apart. These plane images are
projections of three-dimensional points onto an image plane. Figure C.3 gives the
imaging geometry with two coordinate systems, one of which is the world
coordinate system (X, ¥, Z) used to locate the three-dimensional points (denoted
by w), and the other, which is the camera coordinate system (x,y,z) and the
image point, which is denoted by c.

The vector w,, denotes the offset of the center of the gimbal from the origin
of the (X, Y, Z) system, and the vector r denotes the offset of the center of the
imaging plane with respect to the gimbal center. The camera is supposed to be
able to pan about the X axis by an angle 0, and to tilt about the Z axis by an angle
o during the optical setting.
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Image plane

/x' X P(X,Y.2)
//////////// — =1 2, Z

o — A - - ]
I
LA -
-~

FIGURE C4 Object-image point transformation.

Figure C.4 shows the object-image point transformation [Gonzalez and
Wintz (1987)]. Point p(x, y) is the projection of the point P(X, ¥, Z) onto the
image plane; p in the figure is the point of projection and 4 is the focal length of
the lens. By a similar triangle relationship we have

X X
1- T Z-1 D
and
Y
%z_Z—A (€-2)

The negative signs in Eqs. (C.1) and (C.2) are used to indicate that x and X, y and
Y are actually on opposite sides of the Z axis, due to the inverted object-image
property. It follows from (C.1) and (C.2) that

X
and
AY
YTiTz (C.4)

To correlate the object point with the image point, let us introduce the concept of
homogeneous coordinates. Homogeneous coordinates for the object point
(X,Y,Z) in three-dimensional space are represented by the 4 x 1 vector
(kx, ky, kz, k), where k is an arbitrary nonzero constant.
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Converting a point represented as a 4 x 1 vector from a homogeneous
coordinate representation back to the world coordinate system can be accom-
plished by dividing the first three homogeneous coordinates by the fourth. This
process can be geenralized to the conversion of a point represented as an n x 1
vector from a homogeneous coordinate representation to its physical coordinates
of dimension » — 1. For a point in the world coordinate system,

X

W= Y (CS)
zZ

Its homogeneous coordinate representation is given as

kX

w, = g (C.6)

k

where k is an arbitrary, nonzero constant. This point (X, ¥, Z) projects onto the
camera image plane at point ¢, where

=X
N i=Z
LY
Y iz (
z iZ
| 7=z
or
KkX
¢= | KkY (C.8)
KkZ

where K = A/k(4 — Z). Dividing every item of (C.8) by K and using 1/K as the
fourth item of the vector gives the homogeneous counterpart ¢, of the image
point, in a homogeneous coordinate system as

[~ kX

kY

€, = kZ (C-9)
kZ

AT
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which, in turn, can be put in the following form:

10 07 ey
01 0 0|,y
=10 0 1 0[]z (C.10)
00 -~ 1| &
]
or
kX
¢ =P (C.11)
k

where P is a transformation matrix. which relates ¢, and w, and is the matrix for
transformation from a world coordiante system to a camera image plane
coordinate system. It is known as the perspective transformation matrix. Knowing
¢ and P, we can find the world coordinate point from the known image point, and
vice versa, with Egs. (C.7), (C.9), (C.10), and (C.11) and P~! which can be
computed from P.

Note that mapping of a three-dimensional object onto the image plane is a
many-to-one transformation. We cannot recover the three-dimensional world
point from its image unless we know something more about the point (e.g., its
z coordinate) or if we have images taken from two cameras that are a fixed
distance apart. As depicted in Figure C.3, the image plane can be in a very
perturbed orientation with respect to the world coordinate system. It consists of a
combination of translation, panning, and tilting of the image plane about the
global coordinate axes, other than just rotations about the image plane centric
system, thus making the coordinate system transformation complicated. The
overall approach is to bring the camera and world coordiante systems into
alignment by a set of transformations, After this has been accomplished, we

simply apply the perspective transformation to obtain the image plane coordinates
of any given world point,

C.2.2 Translation and Scaling

Translation of a point in the (X, Y, Z) system from one location to another by a
displacement of (X, ¥;, Z,) is equivalent to the coordinate system displaced to a
new coordinate position, which is offset from the old coordinate system by
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FIGURE C.5 Coordinate system XYZ and its counterpart when displaced by X, Y,
and Z,.

displacements —X;, —Y;, and —Z, with the point fixed (see Figure C.5). For the
same point, the two system coordinates (X, Y, Z) and (X*, ¥*, Z*) are related by

X" =X+X,
Y=Y +7, (C.12)
' =7+ 7,

Expressed in matrix form, we have

X+ 1 0 0 X, ][x
| o1t o x|l
zZ|71o 01 z ||z (C.13)
! 000 1 ||1

or

V* = AV (C.14)
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where V is the original coordinate vector of the image point and is represented by
X.Y.Z, 1)7: v* is its coordinate vector after transformation and is
(X*, Y*.Z*, 1)". Both vectors are 4 x 1 in dimension,

100 X
01 0 ¥
_ 15
A=19 0 1 z (€15
00 0 I

is the 4 x 4 transformation matrix for translation. Similarly, for scaling, the
coordinates before and after scaling are related by

X" =sX
V" =sY (C.16)
It =s.Z
or
V' =8V (C.17)

where V* and V are, respectively,

X* X
Vi=}| Y* and V=1|Y (C.18)
VA Z
and
sc 0 0 O
0 s. 0 O
— )
S 0 0 s 0 (C.19)
0 0 0 1

is the transformation matrix for scaling.

C.2.3 Rotation

The transformation for the camera mount tilt and camera mount pan are
complicated because these operations are done by rotating a given point about
an arbirary point in space. This involves three transformations: one translates the
image plane coordinate system to the global coordinate system origin (about
which the pan and tilt rotations occur); a second performs pan rotation about the
X axis and/or tilt rotation about the Z axis; and the third translates the point back
to its original position.
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X P(X,Y)
P, Y
*
X sin® X O\ y*
Y x*
9

- X

FIGURE C.6 Coordinate system XYZ and its counterpart when rotated about the Z-axis
by an angle 0.

Refer to Figure C.6 for the tilt rotation of a point about the Z axis by an
angle 0; we have

X*=Xcosf+ ¥Ysinf
Y* = —=Xsin0O + Ycost (C.20)
2r=Z

Put in matrix form, we have

V* =R,V (C.21)

where R is the transformation matrix for tilt rotation about the Z axis by an angle
f and is

cosO sin@ 0O O
—sinf) cos) O O

R, 0 0 L 0 (C.22)
0 0 0 1

Similarly, a transformation matrix can be derived for the pan rotation of a point
about the X axis by an angle 2 as (see Figure C.7)

1 0 0 0
0 cosax sinx 0
* 0 —sinx cosx O
0 0 0 1

(C.23)
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Z
VA Y PlY,7)

A

o

FIGURE C.7 Coordinate system XYZ and its counterpart when rotated about the X-axis
by an angle a.

and that for the rotation of a point about the Y axis by an angle f§ as (see Figure
C.8)

cosf 0 —sinf 0

0 1 0 0
Rp=1 sin B 0 cosf O (C.24)
0 0 0 i

Let us get back to the problem depicted by Figure C.3 to compute the
corresponding points in the world coordinate system from an image plane. Given

a point in the image plane, say (x,,y,), if we add an arbitrary value z to these
coordinates, we can form a 3 x 1 vector ¢:

Xo
Z
&=
X \ Z PZ, X)
""""" PZ' X"
=
X A
x* \P
p .z

FIGURE C.8 Coordinate system XYZ and its counterpart when rotated about the Y-axis
by an angle f.
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The corresponding cartesian world system coordinates in homogeneous form can
be computed as

L0 0 07 kT
N 0 1 0 0[|p,
thP €, = 0 0 1 0 iz (C26)
1
LO 0 - 1 k
A JL -
— /Q’O -
ky()
= . (C.27)
kz
L5

where the 4 x 4 transformation matrix P~! can be found without much difficulty
and (kxg, kyy, Az, k)T is the homogeneous part of ¢. Dividing the first, second, and
third components of the vector in Eq. (C.27) by the fourth gives

w= | o (C.28)

from which the X component of the point in the world coordinate system can be
expressed as

A%
= C.29
X Atz ( )
Similarly,
AVo
Y = C.30
Atz ( )
and
7 (C.31)
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Solving for the arbitrary assigned parameter z, we have

Substituting (C.32) into (C.29) and (C.30), we obtain
X = ? (i —2) (C.33)
Y :—);TO(;' - Z) (C.34)

From the observations above, it can be noted that mapping of a three-dimensional
object onto the image plane is a many-to-one transformation. We cannot recover
the three-dimensional world point from its image unless we know something
more about the three-dimensional point (e.g., its z coordinates) or if we have
images taken from two cameras that are at a fixed distance apart.

Taking into consideration the displacement of the gimbal center from the
origin, the pan of the x axis with respect to the Z axis, the tilt of the z axis with
respect to the Y axis, and the displacement of the image plane by
r[r = (r,, 5. ;)" ] with respect to the gimbal center as shown in Figure C.3,
the homogeneous representation in the image plane coordinate system, ¢,, relates
to w,,, the homogeneous representation of the same point in the world coordinate
system, as follows:

¢, = PCRGw, (C.35)

where P is the perspective transformation matrix that relates ¢, and w,, as
represented by Eq. (C.11) and (C.6). C, R, and G are the transformation matrices
added to the conversion between ¢, and w;, when rotation and translation of the
gimbal center are taken into consideration. Among them, C is the translational

transformation matrix for r = [—r|, —r,, —r3]T and is
1 0 0 =¥
101 0 -n
C= 00 1 -r (C.36)
6 0 0 1
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R is a product of Ry, the pan of the x axis with respect to the Z axis, and R,, the
tilt of the z axis with respect to the Y axis, and therefore

| 0 0 0 cosf) sinf 0 O
R = R,R, = 0 cosx siny 0 —sinf cosd O O
0 —sinx cosa O 0 0 0 0
| 0 0 0 1 0 0 0 1
[ cosd sin € 0 0
—sinflcosz cosllcosxy sina O
= . ) . (C.37)
sin 0 sin o —coslsina cosa O
i 0 0 0 |

G is the transformation matrix to translate the origin of the world coordinate
system to the location of the gimbal center, and is

1 0 0 —X
6=\ 01 2 (C.38)
0 0 0 |1

The matrix multiplications are complicated. When worked out step by step, we
have

RG =
cos sin {) 0 —X,cosll— Y,sinl
—sinflcosa  cosflcosa  smez X, sinflcosa — ¥,cosficosa — Z;sina (C.39)
sinflsima  —cosflsma cosax  —X,sinfsinz+ Y,coslsma — Z,cosa
L o 0 0 !
CRG =
cos ) s 0 —X,cosl — Yysinll —r
—sinflcosx  cosficosa  sina XosmBcosa — YpcosOcosa — Zysinx — ry
sinflsiny —cosfsina cosa  —X,smfsinx+ Y, cosOsina — Z,cosot —ry
0 0 0 1
(C.40)
PCRG =
cos sin 0 —Xycosf — Yysint —r
—sinficosa  cosflcosx sinx Xysinfcosa — Yycosfcosa — Zysina — ry
smfsma  —cosllsing  cosx —X,sinfsma+ ¥ycosOsina — Z,coso —ry
—sinfisiny cosflsinx —cosx (X0 sinfsinax — Yy cossma + Z,cosa + 1‘3) i1
/ ’ pA A

(C.41)
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Substitute the matrix above into
¢, = PCRGw, (C.42)
and remember that

K x
y Ky C.43)
¢ = y Ch - k’z ( .
z k,

We then have

first component
second component
third component

fourth component

¢, = (C.44)

where

First component = k[X cos 8 + Y sinfl — Xy cosf — Yy sing — r (]
Second component = k[—X sin@cosz + Y cosfcosa + Zsinx

+ X, sinfcosa — Yycostcosa — Zysina — r;]
k ) ) )

Fourth component = —[—X sinfsina + ¥ cosf@sina — Zcosa
A

+ X,sinfOsina — Yy cosOsina + Zycosa + r3] + &

The third component is not involved. Dividing the first and second components of
¢, by the fourth gives x and y:

e (X —Xp)cos 04 (Y — ¥y)sinf — #,
T (X —Xp)sinfsina + (¥ — Yy)cosOsina — (Z — Z,)cos ot + ry + A
(C.45)

and
_ —(X —Xy)sinOcosa + (Y — Yy)cosOcosa + (Z — Z)sinx — r,
r= —(X — Xy)sinOsina 4 (Y — Yp)cosOsina — (Z — Zy)cosa + r3 + 4
(C.46)

This shows that a definite relation is established between the image plane and the
world coordinate system if (X, Y, Z,), (1,74, 13), o, B, and 0 are previously
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fixed. Expressing the mathematical relation between ¢, and w,, [Eq. (C.35)] in the
following general form:

Cn apn dip apy dp X

Chp | _ | an an ap ay [l Y (C.47)
3 d3; dyp Ay Ay 4 '

Cha Ay Qg A3 Ay 1

we can use a set of image points (say, six sets of points) of known world
coordinates to do the camera calibration (i.e., to compute the camera parameters).
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D.1 DEFINITION

A rectangular array

a“ alz . al,,
aZl a22 ‘e azn
A= [at'j]mxn = : . (Dl)
Ami Az - Ay
with a; i=1,...,mj=1,...,n,as the elements is called a matrix of m rows
and n columns, or in brief, an m x n marrix. The rows
alz(afl""vain) i':ls---vm (D.2)
are called the row vectors of A. Similarly, the columns
ﬂ,:(alj,...,a,,,j) j=1,....n (D.3)

are called the column vectors of A.

A transposed matrixA” is obtained from matrix A by interchanging its rows
and columns. Thus

ayg 4y ... Ay
ayp dxn Ay

AT =1 : (D.4)
aln y Ay

613
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If m = n, the matrix A is said to be a square matrix. The main diagonal of
this # x n matrix A consists of the entries a,,, az, . - . . 4,,. I all other entries of
A are zero, A is a diagonal matrix. A diagonal matrix A is a scalar matrix if ¢, =
Ay = -+ = d,,, and is the n x n identity matrix if a;; = a4y, =--- =4q,, = 1.

A lower triangular matrix is a square matrix having all elements above the
main diagonal zero. An upper triangular matrix can be defined similarly.

D.2 MATRIX MULTIPLICATION

Let A be an m x p matrix and B be an p x # matrix; the product

C = AB (D.5)

is an m x n matrix with (i, j)th element represented by
p
Cij = l?:lajkbkj (D6)

Note that the two matrices should be conformable. That is, the two matrices may
be multipled only if the number of columns of the first equals the number of rows
of the second.

Premultiplying a matrix by a conformable diagonal matrix has the effect of
scaling each row of the matrix by the corresponding element in the diagonal
matrix:

a) 0 by by apby  anbp
an by by | = | apby  anby (D.7)
0 ay; [Lbn bn ayby  anby

In a similar manner, postmultiplying a matrix by a conformable diagonal matrix
has the effect of scaling each column by the corresponding element in the
diagonal matrix. Thus

dyy dp 4ap3 by 0 apbyy apby ay3bs3
a;y dypy 4axn by, = | ayby anby, ay3byy
ayy 4z ds 0 bs; ay by aynby ay3by;

(D.8)
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The product of two like triangular matrices produces a third matrix of like form,
such as

a by
a4y 4z by by
asy dip dy by, by by
ay by
= | ax1by1 + ayb;, aynbs, (D.9)
ay by + apbyy +anbsy  anby +apby  anby

D.3 PARTITIONING OF MATRICES

Partitioning of matrices by rows and/or columns is helpful in the manipulation of
matrices that are more complex in nature or large in size. A simple example is

given here for illustration. Suppose that we have a complex simultaneous
equations as follows:

s+i 3—il[x] [ 6
[&4i8+MM@]_L—ﬁ] (D.10)

The set of equations above may be put in the following form:
[A, +iA]lx, + ix;] = b, + ib; (D.11)
or

A,.Xr - A,X, = b’.

(D.12)
Ax, +AX =b,

which may be put in a supermatrix form as

A, —Allx. | [b,
A A ||x | |b (D.13)

where
5 3 1 -1
A, = A=
| 6 8 =2 4
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and x, and x, are column vectors constituting the real and imaginary parts of the
solution vector. A set of complex simultaneous equations can then be converted
into a set of real simultaneous equations.

Substituting the numerical values for A,, A, b,, and b; in Eq. (D.13), we

obtain
e dle 5
6 8 (-2 4 |lx 5
" = D.
1 =1 5 3 [x,-] 0 (D.14)
-2 4 6 8 -5
When
_ =™ _ X
wo[f] = ae[i]
are used, Eq. (D.14) becomes
[5 3][xq] BRI _6:1
6 8||x -2 4=l s
- :L_z: L (D.15)
1 =17 %] 5 30| ¥ 0
+ =
—2  4{x 6 8[| -5
or
'5x’l+3x§] [ X —x, } '6]
6 + 8 2 +ae | |5
T b L (D.16)

[ X -, 5x| +3x, 0
+ =
| —2x) + 4x; 6x, +8¢, | | -5

Solving the set of simultaneous equations above, we obtain
=126 x=-022
X =-032 x, =004
or
X, = x| +ix} =126 —i0.32
X, = x5 + ixh = —0.22 4 i0.04



Appendix D: Matrix Manipulation 617

D4 COMPUTATION OF THE INVERSE MATRIX

In general, a determinant can be evaluated as
detA = Y (—1)Va, det A(il /) (D.17)
=1

where g;; is the (i, Hth entry of A and A(})) is an (n — 1) x (n — 1) matrix
obtained by deleting the ith row and jth column of A. The scalar (—=1)" det A(il))
is called the cofactor of the (i,j)th entry of A and is denoted simply by c;.
Equation (D.17) then becomes

detA = Yayc; (D.18)
=1

In computing a specific determinant, it is frequently easier step by step to
reduce the determinant to a size of lower order. This can be done by adding a
multiple of one row of the determinant to another (or a multiple of one column to
another).

Take (D.16) as an example. x| can be solved as

6 3 -1 1
5 8 2 —4

0 -1 5 3
-5 4 6 8
X = D.19
| i (D.19)
where
5 3 -1 1
6 8 2 —4
|A| = 1 -1 5 3 (D.20)
-2 4 6 8
or
1 -1 5 3
6 8 2 -4
4| = 5 3 _] l {D.21)
-2 4 6 8

By subtracting multiples of row 1 from rows 2, 3, and 4, respectively, |4] can be
reduced to

1 —1 5 3
0 14 —28 -22
10 8 -26 -14
0 2 16 14

(D.22)
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or
7 -14 -1l
Al = —-8l4 —13 7 (D.23)
1 8 7

By following the same procedure, the determinant can be further reduced by

0 7 6
4] = —-400(0 9 7 (D.24)
1 8 7
or
7 6
[A4] -——400l9 7' = 2000

The adjoint of A is defined as an n x n matrix, which is the transpose of the
matrix of cofactors of A. Thus

(adj A); = ¢; = (—1)det A(JI)) (D.25)

The inverse matrix for A is*

A~ = (detA)Y 'adjA =

1 :
det A adj A (D.26)

Example. Use the adjoint formula to compute the inverse of the following
3 x 3 matrix:
cosf§ 0 -—sind

A= 0 1 0
sind 0O cos@

Solution. The determinant of the matrix A is

detA = cos? 6 +sin® @ = 1

*For the denvation of this relation, see Hoffman and Kunze (1971).
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The adjoint of A is

B \1 0 \0 —sind \0 —sinf} _]
0 cos8 0 cos 1 0
) 0 0 cosf? —sin( cos) —sin(
adjA=| —| . ) —
sinf cos( sin ¢ cos [} 0 0
0 1‘ cos 8 0‘ cos 0’
sin0 0 sinf 0 0 1
cosf 0 sinf
= 0 1 0
—sin 0 cosf
Therefore,
) cosf) 0 sinf
Al = adjA=| 0 10
detA —sinff 0 cos(0
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Appendix E: Eigenvectors and
Eigenvalues of an Operator

An eigenvalue and corresponding eigenvector of a matrix satisfy the property that
the eigenvector multipled by the matrix yields a vector proportional to itself. In
other words, an eigenvalue (or characteristic number) of an operator A is a
number A such that for some nonzero vector x the following equality holds:
AX = AX (E.1)

where x, any nonzero vector that satisfies Eq. (E.1), is called an eigenvector of the
operator A, and 4, the proportionality constant, is known as the eigenvalue. For
Eq. (E.1) to be conformable, A must be square. Hence only square matrices have
eigenvalues. The spectrum of an operator is the set of all its eigenvalues.

Let an operator A be represented by

A = (ay) (E.2)
Then
n [
AX = Zalkxk, PN Zankxk (E3)
k=1 k=1
Equation (E.1) represents a system of equations as follows:
any Gy o A (1N X
dyy Ay - Ay |iX2 X2
" =i (E.4)
dyp Ay " Ay || Xy Xy

621
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or

anxy +apx + - +ayx, = /A
anXp +apx; + -+ dyx, = Ax

a, 1%y + a,2x; +-+ ay Xy, = ;L’C”
After shifting terms, we obtain
(all - ;')xl + apHx; +-+ ayXy = 0
ayxy +{ayn — A+ -+ ayx, =0
. . (E.6)

Xy + 0% + -+ (a,, —A)x, =0

This system of equations will have a nonzero solution if and only if the following
characteristic equation is satisfied:

ay — 4 ay aiy,
dyy Ay — A Ay,
=0 (E.7)
a, 7%} R 2 /

That is, this system of equations will have a nonzero solution if and only if £ is a
root of the characteristic polynomial of the matrix.

Example. Let A be a (real) 3 x 3 matrix

3 1 -1
2 2 -1
22 0

Then the characteristic polynomial for A is

A-3 =1 1
—2 =2 1= =52 +8i-4=(1—1)(-2)
—2 =2 i

Thus the characteristic values (eigenvalues) for A are | and 2.
By expanding Eq. (E.7) in terms of 4, the following characteristic equation
results:

M M 4 A+ Gy =0 (E.8)
which, in turn, can be factorized into the form

(= A)(=Ay) - (A=2)=0 (E.9)
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showing that a matrix of order # has n eigenvalues.
Comparing Eq. (E.8) with (E.9) and remembering that the trace of a matrix
is defined as the sum of the diagonal elements of the matrix, we obtain

tr(A) =d +a22+"'+ann
= —Cy = A Ayt A, (E.10)

that is, the sum of the eigenvalues of a matrix is equal to the trace of the matrix.
Also, from Eqgs. (E.7) to (E.9),

IAl =(_‘I)HC0=)\,]I‘{2"';L" (Ell)

that is, the product of the eigenvalues of a matrix equals the determinant of the
matrix.
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Appendix F: Notation

CHAPTER 1
X)
xz
X={ . Pattern or pattern vector
xn
n Number of dimensions of the pattern vector
¥ Number of dimensions of the feature vector
X,
X=1|
L X,{,
X Xy ot Xqp
A Xy o Xy
= . . . Pattern space
L Xl A2 00 X A

625
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Z =

d(-)
a b, c.d

CHAPTER 2

z
d

f(z. w)
(z,d)

r(@ =" Lipdlz)
p(d;[2)

CHAPTER 3
d(x)
di(x)

w 1
Wy

L Wl

Appendix F: Notation

mth prototype in class k&

Pattern class index

Prototype index

Number of pattern classes

Pattern class &

Number of prototypes in the kth class
A distance function

Primitives (or terminals) used for structural
analysis

Prototype vector
Desired output vector
Actual output response
Training pair

Risk function

Probability that z is the same as d;
from the (z, d) pairs

Decision or discriminant function

Values of the discriminant function for
patterns x in class &

Augmented weight vector
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— |
X1
X
X=| :
xn
| 1
d T
{x) =w, X
D(X, Zk)
Z;
Ny
dy'(x)
v
max
3
A
T
W, = (wfl s Wins vy an),
=1, ,R
Wi Wi Wi,
A W?l W w?n
wnl wmr
Wiy
W,
B=] .
WH
C=wy
$(x)

627

Augmented pattern vector

Linear decision function

A metric, euclidean distance of an unknown
pattern x from z;

Prototype average (or class center) for class
0y

The number of prototypes used to represent
the category k

Value of discriminant function for the m
prototype in class k

For all

Belongs to

Does not belong to
Maximum

Summation

There exists
There does not exist

n-dimensional weight vectors for the various
discriminant functions in layered machine

Weight matrix used in quadratic discriminant
function

Weight vector used in quadratic discriminant
function

Weight constant used in quadratic
discriminant function

¢ function (or generalized decision function)
used for pattern classification
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fix)i=1,... Linearly independent, real and single-valued

functions

D(N, n) Linear dichotomies on N patterns in

n-dimensional space

Py number of ¢ dichotomies
total possible number of dichotomies
4 Ratio of N to M + 1
w(x, z)) A potential function of x and z}' defined over

the pattern space

CHAPTER 4

r Margin (or threshold)

w(k), wk + 1) Weight vectors at the kth and (k + 1)th
correction steps

Z =z, zi, c zf', 2:}2Vz Training sequence

\ Gradient operator

J(w) A cnterion function used in weight
adjustment procedure

Pi A positive scale factor, used to set the
training step size

(W) Perceptron criterion function

P Set of samples misclassifed by w(k)

J (W) Relaxation criterion function

sgnd;(z) Equal to +1 or —1 according to
d(z) > or <0

N Total number of prototypes for all classes

N; Total number of prototypes for class ,

M Total number of classes

¢ Error vector

J(w) Sum-of-squared-error criterion function

2" Pseudoinverse or generalized inverse of z

ob;(k) Adjustment for b(k)
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CHAPTER 5
plw;)
p(x)

p(x|w;)
plw;|x)
L

if
re(x)

ok —1)

CHAPTER 6
U

N

{(x;, x;)

%

Tlom

HX,, X;)
c-!
dy(x;, X,)
Dy
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A priori probability of class w,

Probability density function of x, or
probability that x occurs without regard to
category to which it belongs

Likelihood function of class w;
Probability that x comes from w;

Loss or penalty due to deciding x € w,; when
in fact x € w;

Conditional average loss (or conditional
average risk of misclassifying x as in wy)

Kronecker delta function
Normal density function
Mean vector for class &
Covariance matrix for class k&

Arbitrary functions used for determining the
statistical discriminant function

Coefficients for use with ¢, (x) in
determining the statistical discriminant
function

Union

Intersection

Dissimilarity measure between two patterns
Weighting coefficient

Variance of the mth cluster in the kth
direction

Mahalanobis distance from x, to x,
Inverse of the covariance matrix
Tanimoto coefficient

Interset distance between two separate sets
[x.] and [x’ﬁ], i=1,2,...,N,
j: 1‘2""'Nﬁ
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aAX

Z

z(t+ 1)
C(t+1)
Maximin
Q,()

Pi(i)

d(i, j)

k(1)
SIM(m1, 1)
SIM, (m, n)
SIM,(m, n)

mn
f

BPZ!,N
Pt (m)
N()

5,(k)

Appendix F: Notation

Intraset distance in the set [x'],
i=12,....N

2

Membership boundary for a specified cluster

Fractional constant for setting the
indeterminate region

ith cluster

i cluster computed with (¢ + 1) pattern
samples assigned to it

Variance computed with (¢ + 1)
pattern samples

Maximum of the minimum distances

A set of k-nearest neighbors of the sample
points i,i=1,2,...,N,
basing on euclidean distance measure

Potential of the pattern sample point i

Euclidean distance between the sample
points i and j

A set of sample points k-adjacent to the
sample point i

Similarity measure used for merging two
most similar subclusters

Represents the difference in density
between the cluster and the boundary

Represents the relative size of the boundary
to that of the cluster

Denotes the set of points which are in the
cluster m while, at the same time, their
respective k adjacent points are in cluster n

A set of points contained in sub-cluster m

Average of P, (i) over all i in YY"

Average of P, (i) over all points in cluster m

The number of elements of the set inside the
bracket

Denotes a set of unordered pairs of
subclusters

Cluster domain j at the kth iteration
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s, 8", 8"

G =[G,.G, ..., Gyl
R=[R,,Ro, ..., Ry]
GG

RNG
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The number of samples in S,(k)
Number of clusters desired

Minimum number of samples desired in a
cluster
Maximum standard deviation allowed

Minimum distance required between
clusters

Maximum number of pairs of cluster center
which can be lumped

Number of iterations allowed

Cluster centers to be lumped
Number of samples in clusters z; and z;

Clustering parameter suggested by Davies
and Bouldin to obtain natural
partitionings of the data sets

Maximum of Ry
The average of the similarity measures of
each cluster with its most similar cluster

A performance index used by DYNOC
to determine the optimal clusters

“Sampling” or multiple centers or cores
Cluster domains
Degree of similarity of E; to S;

A criterion function used by the
dynamic clusters method

Elements (i, ) of the similarity matrix S used
in the graph theoretic method

Threshold distance denoting the similarity
between two pattern points

Reduced similarity matrices
Graphs

Regions of influence
Gabriel graph

Relative neighborhood graph
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(pi’pj)
B
A

CHAPTER 7

n;: 1

} O‘< > -O)

S

<

Appendix F: Notation

Line segment

A factor of relative edge consistency

Diagonal matrix

Mahalanobis distance produced by the p
features

Contribution of the ith feature to the
Mahalanobis distance

Positive arbitrary constant (less than 1)

Feature weighting coeficients
Intraset distance for pattern points after
transformation

Sample variance of the components along the
x, coordinate direction

Lagrange multiplier

Continual product

The observation (or the intensity of picture
element) in the kth channel for picture
element j in scan line i

The sample mean vector for the /th
category
The covariance matrix for the /th category

The observation vector of dimension n

The transformed vector of dimension p

p * n transformation matrix

The covariance of the means of the
categories

n x M matrix of all the category
means composed of all mean vectors my

Number of categories

M x 1 vector of the number of
observations in the categories

M x M matrix of the number of
observations in the categories
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ny

Cyl ’ Cy2

X, Xg, o0, Xy

I

Yis Voo ¥,
dist(y,|E ;)

T,

Fi!’(

CHAPTER 8
Zi
Zn

1
X
X2
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The number of observations for category /

Combined covariance matrix for all the
categories

p X p identity matrix
Diagonal matrix
Within-class of the projection data

Projections of the pattern points from w,; and
Wy

Fisher’s criterion

Between-class covariance matrix

Total within-class covariance matrix

Basic event generation

Basic events for class w; by means of
BEG

A subset of features for each basic event E;;
Merging function

Pattern space

Training samples from class w,

Training samples from classes other than w;,
The distance between y, and E;

Threshold, a certain positive number

The sets of effective features for / training
samples not in class w;

Prototype vector z;

Unknown pattern vector, input to the
multilayer perceptron
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w(k), wk + 1)

d(x) = w'x

Wy
x,i=12,...,N
X, j=12,...,N
ink=1,2,...,N,
yi=12....M
wj,-,izl,Z....,N

w;q,j:1,2,...,N1

W{k,kz 1,2,...,N2

0},j=1,2,...,N]
O k=12...N
"l=1,2,.... M

AWj»

3E /W),

Appendix F: Notation

Qutput of the multilayer perceptron

Weight vector

Weight vectors at kth and (k + 1)th
correction steps

Discriminant function

Pattern class &

Neurons in the input layer

Neurons in the first hidden layer
Neurons in the second hidden layer
Neurons in the output layer

Weights connecting the neuron x, of the first
hidden layer to neurons x, of the input
layer

Weights connecting the neuron x] of the
second hidden layer to neurons x; of the
first hidden layer

Weights connecting the neuron y, of the
output layer to neurons x; of the second
hidden layer

Bias used in the computation of the output of
neuron x, of the first hidden layer

Bias used in the computation of the output of
neuron x} of the second hidden layer

Bias used in the computation of the output of
neurons y; of the output layer

Increment of the weight adjustment

Gradient of the mapping error E with respect
to Wy
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w.

Ji

AE* /3 net,

H

CHAPTER 9

X
t

e(X)
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Synapse (or weight) connecting the
processing element j of this layer (say
Lth layer) to the processing element i of
the nearest previous layer [say (L — 1)st
layer]

Training set

kth pair of input/output vectors for training

kth pattern vector presented to the system

kth actual (or computed) output vector

kth target vector

Output error vector when the kth input vector

i* is presented

Performance criterion function

Output of the jth neuron unit in the
output layer

[nput to the particular jth neuron in
the output layer from the ith neuron of
the previous hidden layer

Bias
Activation function

Error signal, which is defined as —3E* /3 net,
is Y, Wj,Ok, where O’,‘ is the output of a
neuron in a previous layer.

Sensitivity of the pattern error on the
activation of the jth unit

Learning rate

d-dimensional input vector

Target vector

kth, component of y(x), the function to map
the input space to the one-dimensional
target space

The number of the input vectors
xX'.n=12....N
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M

dilx — é,|)

<

P (x) = exp (—

P(x) = 0'2/[0'2 +Ix - cf|2]

H(x)=(x* +6*)y % a>0

B(x) = X Inx
T

Appendix F: Notation

The number of basis functions in the hidden
unit

A set of basis functions with the Euclidean
distance of the input vector x from a center
c.

!
The vector used to determine the center of
basis function ¢; and has elements ¢;;

Another form of the basis functions with the
euclidean distance of the input vector x
from a center ¢,

Another form of the basis functions with the
euclidean distance of the input vector x
from a center ¢,

Another form of the basis functions
Another form of the basis functions
Cost function for use in the error

minimizatton method

The corresponding ¢ resulting from the
mapping of the radial basis function,
where ¢, = exp(—|x — ¢,]%), and
$, = exp(—|x — &%)

Represent respectively the pattern points
X[, X2, ..., Xg in the transform space

Computed output of the network
Desired output of the network
Error

Number of input/desired output training
pairs

Weight (synapse) at (k + 1)st correction step

¢, at (k + 1)st correction step

Value of g; at (¥ + 1)st correction step

A posteriori probabilities

Likelihood function of class «; with respect
to X

A priori probability of class w;

The probability that x occurs without regard
to the category in which it belongs
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CHAPTER 10

— ! s
net, = x wj—{—bj,j_l,Z,...

W

y=WUbi.».. . -J’M]T
0=[0,.0;.....04]"
Wu

fO

net*

3
Pk

yj,j=1,2,...,m

YY,ak bk =—K,—K+1,...,

T
Xe = (X1, Xpe oo Xpa))
k=1,2,...,N
T
Wi = (Wi Wi W)
i=1L2,....m
wi(1)
wj(r+l)
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Binary bipolar input vector

Binary bipolar encoded class prototype
vector

Hamming distance between the input vector
x and the encoded class prototype vector ¢,

The number of components which agree in
the two binary bipolar n-tuple vectors

The number of components which differ in
the two binary bipolar n-tuple vectors

Total number of components in the binary
bipolar vector

Output of neurons in the Hamming net

Weight matrix of the Hamming net
Input to the Maxnet

Output of the Maxnet

Weight matrix for the Maxnet

Activation function

Results obtained after kth recurrent
processing of the Maxnet

External stimulus signal on the neuron j

The lateral feedback weights connected to
neuron j

Output responses of the network

Lateral interaction of neurons on neuron j in
the output layer

Pattern vectors k

Synaptic weight vector of neuron j in the
output layer

Synaptic weight vector w, of neuron ; at
discrete time ¢

Updated weight vector w; of neuron j at time
t+1
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f(e)

A

d()

CHAPTER 11

X = [)‘1*4\'2\ v wxn]T

Y= [Vlv}’z‘ ce *yn]r

Ui, Uyy oo U,

W

N

net,i=1~nandj#i

]

sgn{:}
S,.pn=12....1
w

S, S

HH

CHAPTER 12
pAr)

r pr)dr

r

I

Appendix F: Notation

Learning rate control parameter

Spatial neighborhood

Euclidean distance between the inputs and
the output neuron j

n-dimensional input vector
Output
Nodes representing the intermediate status of

the output during iterations

Weight from output of node i to input of
node j,i.j=12..... nyand i #£j. It
specifies the contribution of the output
signal y; of the neuron i to the net
potential acting on neuron j

Net potential, which is }_, W y; +

X =6
External input to neuron j
Output of the neuron i,i=1,2,....mj #1i
Threshold applied externally to neuron j
Signum function

A set of [ bipolar pattern vectors

Weight matrix, which is
/MY s, sk — (k/mlp=1.2,....1
Outer product of the vector 8, with itself

Identify matrix

Probability density function (or the relative
occurrence frequency)

Cumulative density function
Input image intensity or gray levels

normalized within the range (0, 1)
Number of pixels at gray level r,
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s

I(r)
H,())
H(k)

S, y)
n(x, y)
fx )
fiX,y)
H(x,v)
G(u, v)
¢
gx, y)
(G -f)

CHAPTER 13
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Output image intensity
Intensity transformation function
Historgram of the input image

Historgram of the image after gray-level
transformation

Hypothetically noise-free input image
The noise

The noisy image

Expected processed image

Process transfer function

Processed image in transform domain
Cost function

The smoothed image

Squared difference between g(x, y) and
f(x,p)

Linear B spline
Quadratic B spline
mth-degree B spline

Angular change for use with Fourier
descriptor for shape discrimination

A chain of codes for graph representation
A straight line segment

x component of a chain link

y component of the chain link

i
Z ajx

J=t—s+1
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Vij

CHAPTER 14
J(x)

Fu)

fxp)

F(u,v)

o UY

E(u, v)

gx. v u, v)

h(x, y:u, v)

o

g.(x, u) or geo(x, u)

gy, v) or grow(v. v)

o0
R = | e dy
—0O0
m .
R = | e as
-00

S(u)

WN — e—_/?.n/N

Wy = g2/ N /2)
Wt ri¢
Glu) = Zo f(zr)(WN/z)
(Nj2)—1

H(u) = 20 JQ@r+DWyp)™

(N/4)-1 p
Gi(u) = [ZO 8(21)(WN/4)U

W/4)-1 1
Gyu) = 3 g+ 1)(Wy)"

[=0

Appendix F: Notation

A criterion used for template matching

One-dimensional function
Fourier transform of f(x)
Two-dimensional image model
Fourier transform of f(x, y)
Phase spectrum of f(x, y)
Energy spectrum of f{(x, y)
Forward transform kernel
Inverse transform kernel

Dirac delta function

Forward column transform kernel
Forward row transform kernel

Columnwise transform f(x, y)
Rowwise transform f(x, y)

A sampling impulse train

A notation used for simplifying the
expressions of the Fourier transform pair
used as the kernel for the sequence of N
terms

Used as the kernel for the sequence of N/2
terms

(N /2)-point discrete Fourier transform

(N /2)-point discrete Fourier transform

That part of G(u) for even values of r

That part of G(u) for odd values of r
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(N/4)—-1

/
H@= Y. hQD)(Wy)"

=0
(N/H)-1

Hy(wy= 3 hl+ 1) (Wy)"
1=0

n=

X. U4y = I I |l b ()b
= _l 1 )u_}_,(ll)
g( ’ ) N ’ ( )

bi(2)

1 n—1
= e —1 E;:U bl(x}b.(u)
gl u) =5 (=1)

Hy
H(u, v)

Fr(u, v)

CHAPTER 15
FT

STFT

CWT

DWT

IDWT

W ()

Wy f(t)

(fv l/’].k)
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That part of H(u) for even values of r

That part of H(u) for odd values of »

Forward transform kernel for Walsh
transform

kth bit in the binary representation of z with
the zeroth bit as the least significant one

Forward transform kernel for Hadamard
transform
Hadamard matrix of order N

N x N symmetric Hadamard transformation
matrix

Hadamard transform of f(x, y)

Original image vector

Transformed vector

Centralized image vector

N? x N? transformation matrix

Variance of the ith element of y along
eigenvector ¢;

Fourier transform

Short time Fourier transform
Continuous wavelet transform
Discrete wavelet transform
Inverse discrete wavelet transform

Basis functions in wavelet transform

One-dimensional continuous wavelet
transform of f(¢)

Inner products of the function f(¢) with each
of the basis functions in one-dimensional
wavelet transform
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Cik

FO=3 " curpl)
ik

lﬁj'k."‘k}’(x' ,V)

W, f(x.9)

(f(x’ J’)» l/j].kt,ky)

fx,y)=
22 2 SV e (X )
bk ky

(1)

Lz

vy = span;[p,(#)]
Vi = span; ¢, (2/1)]
V()

®

4

*

2

2

x(n) and y(n)
A

D
x'(n) and y(n)

P = P2 x — b)Yy — k)

Appendix F: Notation

Set of expansion coefficients obtained from
discrete wavelet transform

One-dimensional inverse wavelet transform

Basis functions in two-dimensional wavelet
transform

Two-dimensional continuous wavelet
transform of f(x, y)

Inner product of f(x, y) with each of the
basis functions y; ;. . 1n
two-dimensional wavelet transform

Two-dimensional inverse wavelet transform

Basic scaling function

The space of all functions f(¢) with a
well-defined integral of the squares of
modulus of the function

Space spanned by ¢,(¢) or p(t — k)
Space spanned by (1) or 2/2p(2t — k)
Wavelets

Superposition

Orthogonality

Convolution

Downsampling by 2 (decimation)
Upsampling (interpolation)

Input and output of the downsampler

Approximation, referring to the high-scale-
factor, low-frequency components of the
signal

Details, referring the low-scale factor,
high-frequency components of the signal

Input and output of the upsampler
(interpolator)

Two-dimensional scaling function, which is
an orthogonal basis function at scale 2/ for
the image function f(x, y)
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VTENERY)

= @(Zx — k W2y — k)

Wiee i (X, )

= Y(2x — k)o(Zy — k)

l/jISOr,ky(x’ y)

= l/’(2jx - k\')ll/(zjy - ky)

LL
C1 ko ky

dljlfkvky

LH
Ay ke iy

HH
A3 ok

CHAPTER 16
Vi (x. )

Jo(ny, ny)
f)-ly(nl ’ nZ)

U}("l» n;)

S(x)

Hefr

m)

r

My

2

U,

2

Dnr

P(x|Road)

P(x|Noroad)
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One of the three two-dimensional wavelets
for the decomposition of the image
function f{x, y)

One of the three two-dimensional wavelets
for the decomposition of the image
function f(x, y)

One of the three two-dimensional wavelets
for the decomposition of the tmage
function f'(x, )

The first subimage giving the approximation
coefficients at a coarse resolution of 27!

“Details” coefficients at a coarse resolution
of 27!

“Details” coefficients at coarse resolution of
2—1

“Details” coefficients at coarse resolution of
2ﬁ1

Laplacian operator

Second derivative with respect to x at the
pixel (ny, n,)

Second derivative with respect to y at the
pixel (n,, n,)

Local variance at the pixel (n,,n,)

Transmitted intensity

Effective attenuation coefficient

The mean of the projected road samples

The mean of the projected noroad samples

The variance in the projected road samples

The variance in the projected noroad
samples

Conditional probability that pixel x is from
the road class

Conditional probability that pixel x is from
noroad class
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P(Road) A priori probability of a pixel being road
P(Noroad) A priori probability of a pixel being Noroad
B Ratio of P(Noroad) to P(Road)
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Share near neighbor rule, 152
Short time Fourier transform (STFT),
482484
Sigmoid logistic nonlinearity, 49, 205
Similarity function, 140
Similarity matrix, 146—149
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Similarity measure, 113-114
Sinc function, 408
Smoothing, 274-303
Sobel operator, 311-312
Solution region, 65
Solution weight vector, 67, 80
Space:
classification space, 8
feature space, 8
pattern space, 8
Spanning tree, 149
Spanning tree method, 149
graph theoretic clustering based on
limited neighborhood sets,
155-161
maximal spanning tree for clustering,
152-155
minimal spanning tree method,
149-152
Spatial domain, 401-402, 422, 429
Spatial processing, 271
Spatial resolution, 598
Spectral band, 13
Spectral characteristics, 11
Spectral distribution:
of the scaling function, 503, 505
of wavelets, 503, 505
Spectral range, 104-106
Spectral response, 15
Spectrum, 407-410, 413-417, 426—440
Speech recognition, 24
Standard deviations, 102, 131, 137, 139,
172, 199, 329
State conditional probability density
function, 83
Statistical decision method, 83
Statistical decision theory, 83
Statistical differencing, 305
Statistical discriminant functions, 82
training for statistical discriminant, 101
Steepest descent, 72
Structural pattern recognition, 21
Subpatterns, 20
Successive doubling, method of, 442451
Sum of squared error criterion function,
77
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Supervised learning (supervised [Variables]

recognition). 29-30, 33, 112 spectral, 580
Symmetrical loss function, 83-84, 87, 91 temporal, 580
Synaptic weights, 29 Vanance, 40, 92, 116
Syntactic pattern recognition, 20-23 Vector gradient, 303
Syntax, 112 Vector space:
Syntax rule, 20 of signals S, 486

spanned by the scaling function, 486,

Tanimoto coefficient, 114 488 _
Template matching, 419 spanned by the wavelet function,
Text strings, 513 487-488
Texture features, 27
Texture and textual images, 352-354 Wallis operator, 325-326
Thinning, 333-336 Walsh transformation, 454459
Threshold logic unit (TLU), 46 Walsh transform pair, 457
Traffic flow measuring, 551-552 Wavelet, 481-501
Training decision processor, 17 analysis, 483
Training set, 83 coefficient, 484-485, 494-495, 497
Transformation matrix, 173, 601 functions, 485
Transform domain, 271-272 Wavelet transform, 481-497
Transform processing, 401-476 continuous, 484485
Translation, 412-416, 603 discrete, 484-485, 494499
Tree, 149 inverse discrete, 484, 494
Two-dimensional Fourler transform, two-dimensional, 499

406-409 Weather forecasting, 23
Typology, 31 Weight, of a tree, 149

Weight adjustments, 207
in backward direction, 207
Weight array, 300
Weight coefficient, 114
Weight Euclidean distance, 113-114
Weight matrix, 98
Weight space, 6263, 69
Variables: Weight vector, 62, 70
spatial, 580 Widrow-HofT rule, 79

Union operator, 112

Unitary matrix, 405
Unsupervised learning, 29-32
Upsampling, 494-495



